查看“︁紹爾-謝拉赫引理”︁的源代码
←
紹爾-謝拉赫引理
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Sauer–Shelah lemma.svg|thumb|upright=1.35|紹爾-謝拉赫引理,經帕约尔推廣的版本:對於每個有限族(綠色),都存在同樣多個集合組成的另一族(藍色),使得藍色族中每個集合,都被綠色族「{{le|碎裂集|shattered set|打碎}}」。]] [[组合数学]]和{{link-en|極值集合論|extremal set theory}}中,'''紹爾-謝拉赫引理'''({{lang-en|Sauer–Shelah lemma}})斷言,若[[集合族]]的[[VC维]]低,則該族不能有太多個集合。引理得名於諾貝特·紹爾<!--似乎是德國/奧地利數學家,姓名按《世界人名翻译大辞典》譯法--><ref>{{cite journal | last = Sauer | first = N. | journal = {{link-en|Journal of Combinatorial Theory}} | mr = 0307902 | pages = 145–147 | series = Series A | title = On the density of families of sets | volume = 13 | year = 1972 | doi=10.1016/0097-3165(72)90019-2 | doi-access=free | language = en}}</ref>和{{link-en|薩哈龍·謝拉赫|Saharon Shelah}}<!--按[[WP:外語譯音表/希伯來語]]--><ref>{{cite journal |last = Shelah |first = Saharon |journal = Pacific Journal of Mathematics |mr = 0307903 |pages = 247–261 |title = A combinatorial problem; stability and order for models and theories in infinitary languages |url = http://projecteuclid.org/getRecord?id=euclid.pjm/1102968432 |archive-url = https://archive.today/20131005003706/http://projecteuclid.org/getRecord?id=euclid.pjm/1102968432 |url-status = dead |archive-date = 2013-10-05 |volume = 41 |year = 1972 |doi = 10.2140/pjm.1972.41.247 |doi-access= free |language = en }}</ref>,兩人分別獨立於1972年發表此結果。{{註|多個來源斷言此處(以及與下文VC二氏的發現)的獨立性<ref>{{cite web |url = https://leon.bottou.org/news/vapnik-chervonenkis_sauer |first = Leon |last = Bottou |title = On the Vapnik-Chevonenkis-Sauer lemma |language = en |access-date = 2022-03-07 |archive-date = 2022-03-19 |archive-url = https://web.archive.org/web/20220319012352/https://leon.bottou.org/news/vapnik-chervonenkis_sauer }}</ref>,如<ref>{{ cite journal|title = Defect Sauer results|first1 = Béla|last1 = Bollobás|first2 = A.J. |last2 = Radcliff |doi = 10.1016/0097-3165(95)90060-8 | journal = Journal of Combinatorial Theory, Series A|volume = 72|year = 1995|pages = 189-208|language = en}}</ref><ref>{{cite book|first1 = Alexander J. |last1 = Smola|first2 = Shahar|last2 = Mendelson| title = Advanced Lectures on Machine Learning | publisher = Springer|isbn = 9783540364344|year = 2003|page = [https://www.google.co.uk/books/edition/Advanced_Lectures_on_Machine_Learning/YTVsCQAAQBAJ?hl=en&gbpv=1&pg=PA12&printsec=frontcover 12]|language = en}}</ref>。}}較之略早,在1971年,[[弗拉基米尔·瓦普尼克]]和[[亞歷克塞·澤范蘭傑斯]]合著的論文<ref>{{cite journal | last1 = Vapnik | first1 = V. N. | author1-link = Vladimir Vapnik | last2 = Červonenkis | first2 = A. Ja. | author2-link = Alexey Chervonenkis | journal = Akademija Nauk SSSR | mr = 0288823 | pages = 264–279 | title = The uniform convergence of frequencies of the appearance of events to their probabilities | volume = 16 | year = 1971 | language = en}}</ref>已有此結果(「VC維」即以兩人為名)。謝拉赫發表引理時,亦歸功於{{link-en|米哈·佩爾萊斯|Micha Perles}}<!--按[[WP:外語譯音表/希伯來語]]-->,故引理又稱為'''佩爾萊斯-紹爾-謝拉赫引理'''。<ref name="brr">{{cite book | last1 = Buzaglo | first1 = Sarit | last2 = Pinchasi | first2 = Rom | last3 = Rote | first3 = Günter | editor-last = Pach | editor-first = János | editor-link = János Pach | contribution = Topological hypergraphs | doi = 10.1007/978-1-4614-0110-0_6 | doi-access=free | pages = [https://archive.org/details/thirtyessaysonge00pach/page/n84 71]–81 | publisher = Springer | title = Thirty Essays on Geometric Graph Theory | url = https://archive.org/details/thirtyessaysonge00pach | year = 2013 | language = en}}</ref> 布萨格洛等人稱其為「關於VC維的最根本結論之一」<ref name="brr"/>。引理在若干方面有應用,就各發現者的研究動機而言,紹爾是研究集族的[[組合學]],謝拉赫研究[[模型论]],VC二氏則研究[[统计学]]。後來,引理亦用於[[离散几何]]<ref name="pa95">{{cite journal | last1 = Pach | first1 = János | author1-link = János Pach | last2 = Agarwal | first2 = Pankaj K. | author2-link = Pankaj K. Agarwal | doi = 10.1002/9781118033203 | isbn = 0-471-58890-3 | location = New York | mr = 1354145 | page = [https://archive.org/details/combinatorialgeo0000pach/page/247 247]–251 | publisher = John Wiley & Sons Inc. | series = Wiley-Interscience Series in Discrete Mathematics and Optimization | title = Combinatorial geometry | year = 1995 | url = https://archive.org/details/combinatorialgeo0000pach/page/247 | doi-access = free |language = en }}</ref>和[[图论]]<ref name="km13">{{cite journal | last1 = Kozma | first1 = László | last2 = Moran | first2 = Shay | arxiv = 1211.1319 | journal = {{link-en|Electronic Journal of Combinatorics}} | volume = 20 | issue = 3 | at = P44 | title = Shattering, Graph Orientations, and Connectivity | url = http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p44 | year = 2013 | bibcode = 2012arXiv1211.1319K | language = en | access-date = 2022-03-06 | archive-date = 2022-05-25 | archive-url = https://web.archive.org/web/20220525201840/https://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p44 | ref = harv | mr = 3118952 }}</ref>。 ==定義及敍述== 設<math> \textstyle \mathcal{F}=\{S_1,S_2,\dots\}</math>為一族集合,<math>T</math>為另一集,此時所謂<math>T</math>為<math>\mathcal{F}</math>的{{le|碎裂集|shattered set}},意思是<math>T</math>的每個子集(包括[[空集]]和<math>T</math>本身),皆可表示成<math>T</math>與該族某集之交<math>T\cap S_i</math>。<math>\mathcal{F}</math>的VC維是其打碎的最大集的[[势 (数学)|大小]]。 利用以上術語,紹爾-謝拉赫引理可以寫成: <blockquote> 若<math>\mathcal{F}</math>是一族集合,且各集合中,合共衹有<math>n</math>個不同元素,但 <math> \textstyle |\mathcal{F}| > \sum_{i=0}^{k-1} {\binom{n}{i}}</math>,則<math>\mathcal{F}</math>打碎某個<math>k</math>元集合。 </blockquote> 所以,若<math>\mathcal{F}</math>的VC維為<math>k</math>(故不打碎任何<math>k + 1</math>元集),則<math>\mathcal{F}</math>中至多衹有<math>\textstyle \sum_{i=0}^{k} {\binom{n}{i}} =O(n^k)</math>個集合。 引理所給的界已是最優:考慮<math>n</math>元集<math>\{1,2,\dots, n\}</math>中,所有小於<math>k</math>個元素的子集,所成的族<math>\mathcal{F}</math>。該族的大小恰為<math>\textstyle \sum_{i=0}^{k-1} {\binom{n}{i}}</math>,但是不打碎任何<math>k</math>元集。<ref name="gowers">{{cite web|title=Dimension arguments in combinatorics|at=Example 3|first=Timothy|last=Gowers|authorlink=Timothy Gowers|work=Gowers's Weblog: Mathematics related discussions|url=http://gowers.wordpress.com/2008/07/31/dimension-arguments-in-combinatorics/|date=2008-07-31|language=en|access-date=2022-03-12|archive-date=2022-07-09|archive-url=https://web.archive.org/web/20220709043635/https://gowers.wordpress.com/2008/07/31/dimension-arguments-in-combinatorics/}}</ref> ==打碎多少集合== 帕约尔將紹爾-謝拉赫引理加強為:{{refn|{{cite journal | last = Pajor | first = Alain | isbn = 2-7056-6021-6 | location = Paris | mr = 903247 | publisher = Hermann | series = Travaux en Cours | title = Sous-espaces <math>l^n_1</math> des espaces de Banach | volume = 16 | year = 1985 |language = fr}} 由<ref name = "ars02"/>引述。}} <blockquote> 有限族<math>\mathcal{F}</math>必打碎至少<math>|\mathcal{F}|</math>個集合。 </blockquote> 紹爾-謝拉赫引理為其直接推論,因為<math>n</math>元全集的子集中,衹有<math>\textstyle \sum_{i=0}^{k-1} {\binom{n}{i}} </math>個的元素個數小於<math>k</math>。故<math>\textstyle |\mathcal{F}|>\sum_{i=0}^{k-1} {\binom{n}{i}}</math>時,即使全部小集皆已打碎,仍不足<math>|\mathcal{F}|</math>個,故必有打碎某個不少於<math>k</math>元的集合。 亦可將「碎裂」的概念加以限縮,變成「順序碎裂」({{lang|en|order-shattered}})。此時,任意集族順序打碎的集合數,必恰好等於該族的大小。<ref name="ars02">{{cite journal | last1 = Anstee | first1 = R. P. | last2 = Rónyai | first2 = Lajos | last3 = Sali | first3 = Attila | doi = 10.1007/s003730200003 | doi-access=free | issue = 1 | journal = {{le|Graphs and Combinatorics}} | mr = 1892434 | pages = 59–73 | title = Shattering news | volume = 18 | year = 2002 | ref = harv | language = en }}</ref> == 證 == 紹爾-謝拉赫引理的帕約爾變式可使用[[数学归纳法]]證明,此證法一說出自[[諾加·阿隆]]<ref>{{cite web|url=http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems/|first=Gil|last=Kalai|authorlink=Gil Kalai|title=Extremal Combinatorics III: Some Basic Theorems|work=Combinatorics and More|date=2008-09-28|language=en|access-date=2022-03-13|archive-date=2022-03-13|archive-url=https://web.archive.org/web/20220313040534/https://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems/}}</ref>,一說出自{{link-en|朗·阿哈羅尼|Ron Aharoni}}及朗·霍爾茲曼({{lang|en|Ron Holzman}})<ref name="ars02"/>。 作為歸納法的起始步驟,單一個集合組成的族<math>\mathcal F</math>,能打碎[[空集]],已足<math>|\mathcal F|</math>個。 至於遞推步驟,可假設引理對任意少於<math>|\mathcal F|</math>個集合組成的族皆成立,且族<math>\mathcal{F}</math>有至少兩個集合,故可選取元素<math>x</math>為其一的元素,但不屬於另一集。如此便可將<math>\mathcal{F}</math>的集合分成兩類:包含<math>x</math>的集合歸入子族<math>\mathcal F_1</math>,不含<math>x</math>的則歸入<math>\mathcal F_0</math>。 由歸納假設,兩子族各自打碎的集合數,其和至少為<math>|\mathcal F_0| + |\mathcal F_1| = |\mathcal{F}|</math>。 該些碎裂集不能有元素<math>x</math>,因為若要打碎某個有<math>x</math>的集合<math>A</math>,則族中需要有含<math>x</math>的集合,也需要有不含<math>x</math>的集合,纔能使該族各集與<math>A</math>的交集出齊<math>A</math>的全體子集。 若集<math>S</math>衹被一個子族打碎,則數算兩子族打碎的集合時,<math>S</math>計為一個,數<math>\mathcal{F}</math>打碎的集合時亦計為一個。但<math>S</math>也可能同時被兩子族打碎,如此,數算兩子族打碎的集合時,會將<math>S</math>計兩次;不過<math>\mathcal F</math>既打碎<math>S</math>,也打碎<math>S\cup\{x\}</math>,所以<math>S</math>(和<math>S\cup\{x\}</math>)在數<math>\mathcal{F}</math>打碎的集合時,也計為兩次。由此,<math>\mathcal F</math>打碎的集合數,不小於兩子族各自打碎集合數之和,從而不小於<math>|\mathcal{F}|</math>。 紹爾-謝拉赫引理的原始形式還有另一種證明,利用[[线性代数]]及[[容斥原理]],該證法由{{link-en|弗龍克爾·彼得|Péter Frankl}}<!--沿用[[圖蘭·帕爾]]一文的譯名-->和{{link-en|保奇·亞諾什|János Pach}}<!--沿用[[塞邁雷迪-特羅特定理]]的譯名-->給出。<ref name="pa95"/><ref name="gowers"/> == 應用 == VC二氏原先將引理應用於證明,若考慮一族VC維固定的事件,則衹需有限多個取樣點,即可近似任意的概率分佈(使取樣所得的事件概率近似該分佈下的事件概率),且取樣點的個數衹取決於VC維數。具體而言,有兩種意義下的近似,各由參數<math>\varepsilon</math>定義: #取樣集<math>S</math>上的概率分佈定義為原分佈的「<math>\varepsilon</math>近似」({{lang-en|<math>\varepsilon</math>-approximation}}),意思是每個事件被<math>S</math>以該分佈取樣的概率,與原概率所差不過<math>\varepsilon</math>。 #取樣集<math>S</math>(不設權重)定義為「{{link-en|ε網 (計算幾何)|ε-net (computational geometry)|''ε''網}}」,意思是概率不小於<math>\varepsilon</math>的任一事件中,必含<math>S</math>中至少一點。 由定義,<math>\varepsilon</math>近似必為<math>\varepsilon</math>網,反之則不一定。 VC二氏以此引理證明,若某集族的VC維為<math>d</math>,則必有大小不過<math>O(\tfrac{d}{\varepsilon^2}\log\tfrac{d}{\varepsilon})</math>的<math>\varepsilon</math>近似。其後,{{harvtxt|Haussler|Welzl|1987}}<ref name="hw87">{{cite journal | last1 = Haussler | first1 = David | author1-link = David Haussler | last2 = Welzl | first2 = Emo | author2-link = Emo Welzl | doi = 10.1007/BF02187876 | issue = 2 | journal = {{link-en|離散與計算幾何|Discrete and Computational Geometry|Discrete and Computational Geometry}} | mr = 884223 | pages = 127–151 | title = ε-nets and simplex range queries | volume = 2 | year = 1987| doi-access = free }}</ref>和{{harvtxt|Komlós|Pach|Woeginger|1992}}<ref>{{cite journal | last1 = Komlós | first1 = János | author1-link = János Komlós (mathematician) | last2 = Pach | first2 = János | author2-link = János Pach | last3 = Woeginger | first3 = Gerhard | author3-link = Gerhard J. Woeginger | doi = 10.1007/BF02187833 | issue = 2 | journal = {{link-en|離散與計算幾何|Discrete and Computational Geometry|Discrete and Computational Geometry}} | mr = 1139078 | pages = 163–173 | title = Almost tight bounds for ε-nets | volume = 7 | year = 1992| doi-access = free }}.</ref>等發表了類似的結果,證明必存在大小為<math>O(\tfrac{d}{\varepsilon}\log\tfrac{1}{\varepsilon})</math>的<math>\varepsilon</math>網,具體上界為<math>\tfrac{d}{\varepsilon}\ln\tfrac{1}{\varepsilon}+\tfrac{2d}{\varepsilon}\ln\ln\tfrac{1}{\varepsilon}+\tfrac{6d}{\varepsilon}</math>。<ref name="pa95"/>證明存在小<math>\varepsilon</math>網的主要方法是,先揀選<math>O(\tfrac{d}{\varepsilon}\log\tfrac{1}{\varepsilon})</math>個點的隨機樣本<math>x</math>,再獨立揀選另<math>O(\tfrac{d}{\varepsilon}\log^2\tfrac{1}{\varepsilon})</math>個點的隨機樣本<math>y</math>,然後證明以下的不等式:存在某個較大事件<math>E</math>與<math>x</math>不交的概率<math>p_1</math>,與存在同樣的事件,且該事件與<math>y</math>相交點數大於中位值的概率<math>p_2</math>,兩概率之比至多為<math>2</math>。若固定<math>E</math>和<math>x \cup y</math>,則<math>x</math>不交<math>E</math>而<math>y</math>與<math>E</math>相交點數多於中位值的概率很小。由紹爾-謝拉赫引理,<math>E</math>與<math>x \cup y</math>的交集的可能情況並不太多,計算「存在<math>E</math>滿足條件」的概率時,衹需對每種交集的可能性考慮一個<math>E</math>,因此由[[布尔不等式|併集上界]],可得<math>p_1 \le 2p_2 < 1</math>,故<math>x</math>有非零概率為<math>\varepsilon</math>網。<ref name="pa95"/> 以上論證說明隨機取樣足夠多個點就可能是<math>\varepsilon</math>網。此性質以及<math>\varepsilon</math>網、<math>\varepsilon</math>近似兩概念本身,皆在[[机器学习]]和{{link-en|概率近似正確學習|probably approximately correct learning}}方面有應用。<ref>{{cite journal | last1 = Blumer | first1 = Anselm | last2 = Ehrenfeucht | first2 = Andrzej | last3 = Haussler | first3 = David | author3-link = David Haussler | last4 = Warmuth | first4 = Manfred K. | doi = 10.1145/76359.76371 | issue = 4 | journal = [[ACM期刊|Journal of the ACM]] | mr = 1072253 | pages = 929–965 | title = Learnability and the Vapnik–Chervonenkis dimension | volume = 36 | year = 1989}}</ref>[[计算几何]]方面的應用則有{{link-en|範圍搜索|range searching}}<ref name="hw87"/>、{{le|去随机化|derandomization}}<ref>{{cite journal | last1 = Chazelle | first1 = B. | author1-link = Bernard Chazelle | last2 = Friedman | first2 = J. | doi = 10.1007/BF02122778 | doi-access=free | issue = 3 | journal = {{link-en|Combinatorica}} | mr = 1092541 | pages = 229–249 | title = A deterministic view of random sampling and its use in geometry | volume = 10 | year = 1990}}</ref>、[[近似算法]]<ref>{{cite journal | last1 = Brönnimann | first1 = H. | last2 = Goodrich | first2 = M. T. | author2-link = Michael T. Goodrich | doi = 10.1007/BF02570718 | issue = 4 | journal = {{link-en|離散與計算幾何|Discrete and Computational Geometry|Discrete and Computational Geometry}} | mr = 1360948 | pages = 463–479 | title = Almost optimal set covers in finite VC-dimension | volume = 14 | year = 1995| doi-access = free }}</ref><ref>{{cite book | last = Har-Peled | first = Sariel | authorlink = Sariel Har-Peled | contribution = On complexity, sampling, and ε-nets and ε-samples | isbn = 978-0-8218-4911-8 | location = Providence, RI | mr = 2760023 | pages = 61–85 | publisher = American Mathematical Society | series = Mathematical Surveys and Monographs | title = Geometric approximation algorithms | volume = 173 | year = 2011}}</ref>。 {{harvtxt|Kozma|Moran|2013}}利用紹爾-謝拉赫引理的推廣,證明若干[[圖論]]結果,例如:圖的{{link-en|強定向|strong orientation}}{{註|為每條邊選定一方向,使全幅圖[[強連通]]。}}方案數介於其[[连通性 (图论)|連通]]子圖數與{{le|邊k連通|k-edge-connected graph|邊雙連通}}子圖數之間。<ref name="km13"/> == 註 == {{備註表}} == 參考文獻 == {{reflist|30em}} [[Category:集合族]] [[Category:引理]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Harvtxt
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Refn
(
查看源代码
)
Template:備註表
(
查看源代码
)
Template:註
(
查看源代码
)
返回
紹爾-謝拉赫引理
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息