查看“︁特殊函数的渐近展开式”︁的源代码
←
特殊函数的渐近展开式
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{unreferenced|time=2017-05-12T10:32:50+00:00}} '''特殊函数的渐近展开式''' ;[[安格尔函数]] <math>AngerJ(3,x) \approx {\sqrt(2)*cos(x+(1/4)*Pi)*\sqrt(1/x)/\sqrt(Pi)-(35/8)*\sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^(3/2)/\sqrt(\pi)-(945/128)*\sqrt(2)*cos(x+(1/4)*\pi)*(1/x)^(5/2)/\sqrt(\pi)+O((1/x)^(7/2))}</math> ;[[艾瑞函数]] <math>AiryAi(z)\approx (1/2)*exp(-(2/3)*z^(3/2))*(1/z)^(1/4)/\sqrt(\pi)-(5/96)*exp(-(2/3)*z^(3/2))*(1/z)^(7/4)/\sqrt(\pi)+(385/9216)*exp(-(2/3)*z^(3/2))*(1/z)^(13/4)/\sqrt(\pi)+O((1/z)^(19/4))</math> *<math>AiryBi(z) \approx exp((2/3)*z^(3/2))*(1/z)^(1/4)/\sqrt(\pi)+(5/48)*exp((2/3)*z^(3/2))*(1/z)^(7/4)/\sqrt(\pi)+(385/4608)*exp((2/3)*z^(3/2))*(1/z)^(13/4)/\sqrt(\pi)+O((1/z)^(19/4))</math> ;[[贝塞尔函数]] <math>BesselI(3,x) \approx {(1/2)*sqrt(2)*exp(x)*sqrt(1/x)/sqrt(Pi)-(35/16)*sqrt(2)*exp(x)*(1/x)^(3/2)/sqrt(Pi)+(945/256)*sqrt(2)*exp(x)*(1/x)^(5/2)/sqrt(Pi)-(3465/2048)*sqrt(2)*exp(x)*(1/x)^(7/2)/sqrt(Pi)-(45045/65536)*sqrt(2)*exp(x)*(1/x)^(9/2)/sqrt(Pi)+O((1/x)^(11/2))}</math> <math>BesselJ(3,x) \approx {\sqrt(2)*cos(x+(1/4)*Pi)*\sqrt(1/x)/\sqrt(\pi)-(35/8)*\sqrt(2)*cos(x-(1/4)*\pi)*(1/x)^(3/2)/\sqrt(\pi)-(945/128)*\sqrt(2)*cos(x+(1/4)*\pi)*(1/x)^(5/2)/\sqrt(\pi)+(3465/1024)*sqrt(2)*cos(x-(1/4)*\pi)*(1/x)^(7/2)/\sqrt(\pi)-(45045/32768)*\sqrt(2)*cos(x+(1/4)*\pi)*(1/x)^(9/2)/\sqrt(\pi)+O((1/x)^(11/2))}</math> <math>BesselK(3,) \approx {(1/2)*sqrt(2)*sqrt(Pi)*exp(-x)*sqrt(1/x)+(35/16)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^(3/2)+(945/256)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^(5/2)+(3465/2048)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^(7/2)-(45045/65536)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^(9/2)+O((1/x)^(11/2))}</math> ;[[Γ函数]] <math> BesselY(3,x), \approx {sqrt(2)*cos(x-(1/4)*Pi)*sqrt(1/x)/sqrt(Pi)+(35/8)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)^(3/2)/sqrt(Pi)-(945/128)*sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^(5/2)/sqrt(Pi)-(3465/1024)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)^(7/2)/sqrt(Pi)-(45045/32768)*sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^(9/2)/sqrt(Pi)+O((1/x)^(11/2))}</math> <math>\Gamma(z) \approx (ln(z)-1)*z+ln(\sqrt(2)*\sqrt(\pi))-(1/2)*ln(z)+1/(12*z)-1/(360*z^3)+1/(1260*z^5)-1/(1680*z^7)+O(1/z^9)</math> [[误差函数]] *<math>erf(x) \approx {1+(-1/(\sqrt(\pi)*x)+1/(2*\sqrt(\pi)*x^3)-3/(4*\sqrt(\pi)*x^5)+15/(8*\sqrt(\pi)*x^7)-105/(16*\sqrt(\pi)*x^9)+O(1/x^11))/exp(x^2)}</math> [[斐涅尔函数]] <math>FresnelC(x) \approx 1/2+sin((1/2)*\pi*x^2)/(\pi*x)-cos((1/2)*\pi*x^2)/(\pi^2*x^3)-3*sin((1/2)*\pi*x^2)/(\pi^3*x^5)+15*cos((1/2)*\pi*x^2)/(\pi^4*x^7)+105*sin((1/2)*\pi*x^2)/(\pi^5*x^9)</math> *<math>FresnelS(x) \approx {1/2-cos((1/2)*\pi*x^2)/(\pi*x)-sin((1/2)*\pi*x^2)/(\pi^2*x^3)+3*cos((1/2)*\pi*x^2)/(\pi^3*x^5)+15*sin((1/2)*\pi*x^2)/(\pi^4*x^7)-105*cos((1/2)*\pi*x^2)/(\pi^5*x^9)+O(1/x^10)}</math> [[Category:特殊函数]] [[Category:渐近分析]]
该页面使用的模板:
Template:Unreferenced
(
查看源代码
)
返回
特殊函数的渐近展开式
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息