查看“︁浸入”︁的源代码
←
浸入
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Klein bottle.svg|thumb|[[克萊因瓶]]浸入到3-空間中。]] [[數學]]上,'''浸入'''是[[微分流形]]之間的[[可微映射]],其[[前推 (微分)|導數]]處處是[[單射]]。確切而言,''f'' : ''M'' → ''N''是浸入,若在''M''中每一點''p'', :<math>D_pf : T_p M \to T_{f(p)}N\,</math> 都是[[单射]]。(''T<sub>p</sub>X''表示''X''在點''p''處的[[切空間]]。另一個等價說法是''f''是浸入,若''f''的[[秩 (微分拓撲)|秩]]是常數,且等於''M''的維數: :<math>\operatorname{rank}\,D_p f = \dim M.</math> 以上只要求''f''的導數為單射,但映射''f''未必是單射。 一個與浸入相關的概念是[[嵌入 (數學)#微分拓撲|嵌入]]。光滑嵌入是一個單射浸入''f'' : ''M'' → ''N''而同時為拓撲嵌入,使得''M''與其在''N''中的像[[微分同胚]]。浸入正是局部嵌入,即對''M''中每一點''x''都有一個''x''的[[鄰域]]''U'' ⊂ ''M'',使得''f'' : ''U'' → ''N''是嵌入。相反地,局部嵌入都是浸入。 [[File:Immersedsubmanifold nonselfintersection.jpg|thumb|一個單射[[子流形#浸入子流形|浸入子流形]]而不是嵌入。]] 若''M''是[[緊緻]]的,則單射浸入是一個嵌入;若''M''不是[[緊緻]],則未必成立。這兩者的關係就如同連續雙射之於[[同胚]]。 ==參考== {{reflist}} {{refbegin}} * {{Citation |title=Embeddings and immersions |first=Masahisa |last=Adachi |url=http://books.google.com/books?id=JcMwHWSBSB4C |postscript=, translation Kiki Hudson |isbn=978-0-8218-4612-4 |year=1993 |accessdate=2013-09-29 |archive-date=2013-11-26 |archive-url=https://web.archive.org/web/20131126173835/http://books.google.com/books?id=JcMwHWSBSB4C |dead-url=no }} *{{Citation|authorlink=Vladimir Arnold|first=V. I.|last=Arnold|first2=A. N.|last2=Varchenko|first3=S. M.|last3=Gusein-Zade|title=Singularities of Differentiable Maps: Volume 1|publisher=Birkhäuser|year=1985|isbn=0-8176-3187-9}} *{{Citation|first=J. W.|last=Bruce|first2=P. J.|last2=Giblin|title=Curves and Singularities|publisher=Cambridge University Press|year=1984|isbn=0-521-42999-4}} *{{Citation |first1=J. Scott |last1=Carter |first2=Masahico |last2=Saito |year=1995 |title=Surfaces in 3-Space That Do Not Lift to Embeddings in 4-Space |url=http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.1505 |postscript=published in conference proceedings Knot theory, Banach center publications, 42 Warzawa (1998), 29–47. |accessdate=2013-09-29 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304084649/http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.1505 |dead-url=no }} *{{Citation |first1=J. Scott |last1=Carter |first2=Masahico |last2=Saito |year=1998 |title=Knotted Surfaces and Their Diagrams |series=Mathematical Surveys and Monographs |volume=55 |pages=258 |isbn=978-0-8218-0593-0 }} *{{Citation |first1=J. Scott |last1=Carter |first2=Seiichi |last2=Kamada |first3=Masahico |last3=Saito |title=Surfaces in 4-space |year=2004 }} *{{Citation|authorlink=Mikhail Gromov (mathematician)|first=M.|last=Gromov|title=Partial differential relations|publisher=Springer|year=1986|isbn=3-540-12177-3}} *Hirsch M. ''Immersions of manifolds''. [[Trans. A.M.S.]] 93 1959 242—276. *{{Citation |last=Koschorke |first=Ulrich |title=Multiple points of Immersions and the Kahn-Priddy Theorem |journal=Math Z. |year=1979 |pages=223–236 |issue=169}} *Smale, S. ''A classification of immersions of the two-sphere.'' Trans. Amer. Math. Soc. 90 1958 281–290. *Smale, S. ''The classification of immersions of spheres in Euclidean spaces''. [[Annals of Mathematics|Ann. of Math.]] (2) 69 1959 327—344. *{{citation |last=Spring |first=D. |url=http://www.ams.org/bull/2005-42-02/S0273-0979-05-01048-7/S0273-0979-05-01048-7.pdf |title=The Golden Age of Immersion Theory in Topology: 1959-1973 |journal=[[Bulletin of the American Mathematical Society]] |issue=42 |pages=163–180 |year=2005 |accessdate=2013-09-29 |archive-date=2008-07-25 |archive-url=https://web.archive.org/web/20080725143529/http://www.ams.org/bull/2005-42-02/S0273-0979-05-01048-7/S0273-0979-05-01048-7.pdf |dead-url=no }} *Wall, C. T. C.: ''Surgery on compact manifolds''. 2nd ed., Mathematical Surveys and Monographs 69, A.M.S. {{refend}} ==外部連結== *[http://www.map.mpim-bonn.mpg.de/Immersion Immersion] {{Wayback|url=http://www.map.mpim-bonn.mpg.de/Immersion |date=20200809002453 }} at the Manifold Atlas *[http://www.encyclopediaofmath.org/index.php/Immersion_of_a_manifold Immersion of a manifold] {{Wayback|url=http://www.encyclopediaofmath.org/index.php/Immersion_of_a_manifold |date=20150331073015 }} at the Encyclopedia of Mathematics [[Category:微分拓扑学]] [[Category:光滑函数]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Refbegin
(
查看源代码
)
Template:Refend
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
浸入
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息