查看“︁殆素数”︁的源代码
←
殆素数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{Expand|time=2013-02-14T05:26:04+00:00}} {{expert|time=2010-03-05T02:16:58+00:00|subject=数学}} {{noteTA|G1=Math}} [[数论]]中,一个[[自然数]]称为'''殆素数''',[[当且仅当]]存在一个绝对常数''K'',使这个自然数最多有''K''个[[質因數|素因子]]<ref>{{cite book | last1 = Sándor | first1 = József | last2 = Dragoslav | first2 = Mitrinović S. | last3 = Crstici | first3 = Borislav | title = Handbook of Number Theory I | publisher = [[Springer Science+Business Media|Springer]] | year = 2006 | page = 316 | language = en | url = http://link.springer.com/referencework/10.1007%2F1-4020-3658-2 | isbn = 978-1-4020-4215-7 | access-date = 2015-04-14 | archive-date = 2021-03-08 | archive-url = https://web.archive.org/web/20210308072121/http://link.springer.com/referencework/10.1007/1-4020-3658-2 | dead-url = no }}</ref><ref>{{cite journal | title = On the representation of an even number as the sum of a single prime and single almost-prime number | first = Alfréd A. | last = Rényi | journal = Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya | volume = 12 | issue = 1 | year = 1948 | pages = 57–78 | language = ru | url = http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=3018&option_lang=eng | access-date = 2015-04-14 | archive-date = 2021-04-08 | archive-url = https://web.archive.org/web/20210408231103/http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=3018&option_lang=eng | dead-url = no }}</ref>。自然数''n''称为'''k次殆素数''',[[当且仅当]]Ω(''n'') = ''k'',其中Ω(''n'')是''n''的[[整数分解]]过程中的指数和: :<math>\Omega(n) := \sum a_i \qquad\mbox{if}\qquad n = \prod p_i^{a_i}</math> 因此,一个自然数是[[素数]],当且仅当它是一次殆素数;一个自然数是[[半素数]],当且仅当它是二次殆素数。k次殆素数的集合通常表示成''P''<sub>''k''</sub>。开始的几个k次殆素数是: : {| class="wikitable" |----- ! ''k'' ! ''k''次殆素数 ! [[OEIS]]数列 |----- | 1 || 2, 3, 5, 7, 11, 13, 17, 19, ... | {{oeis|A000040}} |----- | 2 || 4, 6, 9, 10, 14, 15, 21, 22, ... | {{oeis|A001358}} |----- | 3 || 8, 12, 18, 20, 27, 28, 30, ... | {{oeis|A014612}} |----- | 4 || 16, 24, 36, 40, 54, 56, 60, ... | {{oeis|A014613}} |----- | 5 || 32, 48, 72, 80, 108, 112, ... | {{oeis|A014614}} |----- | 6 || 64, 96, 144, 160, 216, 224, ... | {{oeis|A046306}} |----- | 7 || 128, 192, 288, 320, 432, 448, ... | {{oeis|A046308}} |----- | 8 || 256, 384, 576, 640, 864, 896, ... | {{oeis|A046310}} |----- | 9 || 512, 768, 1152, 1280, 1728, ... | {{oeis|A046312}} |----- | 10 || 1024, 1536, 2304, 2560, ... | {{oeis|A046314}} |----- | 11 || 2048, 3072, 4608, 5120, ... | {{oeis|A069272}} |----- | 12 || 4096, 6144, 9216, 10240, ... | {{oeis|A069273}} |----- | 13 || 8192, 12288, 18432, 20480, ... | {{oeis|A069274}} |----- | 14 || 16384, 24576, 36864, 40960, ... | {{oeis|A069275}} |----- | 15 || 32768, 49152, 73728, 81920, ... | {{oeis|A069276}} |----- | 16 || 65536, 98304, 147456, ... | {{oeis|A069277}} |----- | 17 || 131072, 196608, 294912, ... | {{oeis|A069278}} |----- | 18 || 262144, 393216, 589824, ... | {{oeis|A069279}} |----- | 19 || 524288, 786432, 1179648, ... | {{oeis|A069280}} |----- | 20 || 1048576, 1572864, 2359296, ... | {{oeis|A069281}} |} ==参考资料== {{Reflist}} == 外部連結 == * [http://mathworld.wolfram.com/AlmostPrime.html MathWorld: Almost prime] {{Wayback|url=http://mathworld.wolfram.com/AlmostPrime.html |date=20210323023027 }} {{質數}} [[Category:整数数列|D]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Expand
(
查看源代码
)
Template:Expert
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Oeis
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:質數
(
查看源代码
)
返回
殆素数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息