查看“︁斐波那契双曲函数”︁的源代码
←
斐波那契双曲函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''斐波那契双曲函数'''(Fibonoacci hyperbolic functions)是一个与[[黄金分割]]有关的特殊函数<ref>{{Cite mathworld|urlname=FibonacciHyperbolicFunctions|title=Fibonoacci hyperbolic functions |access-date=2015-05-12 |archive-date=2021-02-24 |archive-url=https://web.archive.org/web/20210224105014/https://mathworld.wolfram.com/FibonacciHyperbolicFunctions.html |dead-url=no }}</ref>。 ==斐波那契双曲函数== 定义如下:<ref>Zdzlslaw W. Trzaska,ON FIBONACCI HYPERBOLIC TRIGONOMETRY AND MODIFIED NUMERICAL TRIANGLES,1994</ref> ;斐波那契双曲正弦函数 <math> sFh(x)=\frac{ 2*sinh(2*x*\alpha)}{\sqrt{5}} </math> 其中<math>\alpha</math>是[[黄金分割]]的对数: <math>\alpha=ln(\phi)=ln \frac{1+\sqrt{5}}{2}=0.4812118246</math> ;斐波那契双曲余弦函数 <math> cFh(x)= \frac{2*sinh(2*x*\alpha)}{\sqrt{5}} </math> ;斐波那契双曲正切函数 <math> tFh(x)=\frac{fsh(x)}{fch(x)} </math> ===斐氏双曲函数图=== {| |[[File:Fibonacci hyperbolic sine 01.png|thumb|Fibonacci hyperbolic sine]] |[[File:Fibonacci hyperbolic sine imaginary part density plot.png|thumb|斐波那契双曲正弦虚数图]] |[[File:Fibonacci hyperbolic sine imaginary part 3D.png|thumb|斐氏正弦虚数三维图]] |} {| |[[File:Fibonacci hyperbolic cosine.png|thumb|Fibonacci hyperbolic cosine]] |[[File:Fibonacci hyperbolic cosine imaginary part 3D.png|thumb|斐氏双曲余弦虚数三维图]] |} {| |[[File:Fibonacci hyperbolic tangent.png|thumb|Fibonacci hyperbolic tangent]] |[[File:Fibonacci hyperbolic tangent imaginary part density plot.png|thumb|斐氏双曲正切虚数图]] |} ===关系式=== *<math>sFh(-x)=-sFh(x) </math> *<math> cFh(-x)=cFh(x-1) </math> *<math> sFh^2(x)+cFh^2(x)=cFh(2x) </math> *<math> cFh^2(x)-sFh^2(x)=1+sFh(x)cFh(x) </math> *<math>sFh(x)+sFh(y)=\sqrt(5)sFh*(\frac{x+y}{2})cFh(\frac{x-y-1}{2} ) </math> *<math> cFh(x)+cFh(y)=\sqrt{5}cFh(\frac{x+y}{2} )cFh(\frac{x+y-1}{2} ) </math> *<math> </math> *<math> </math> *<math> </math> *<math> </math> *<math> </math> ===级数展开=== *<math>fsh(x) \approx \left\{ (4/5\,\sqrt {5}\ln \left( 1/2+1/2\,\sqrt {5} \right) x+{ \frac {8}{15}}\,\sqrt {5} \left( \ln \left( 1/2+1/2\,\sqrt {5} \right) \right) ^{3}{x}^{3}+{\frac {8}{75}}\,\sqrt {5} \left( \ln \left( 1/2+1/2\,\sqrt {5} \right) \right) ^{5}{x}^{5}+{\frac {16}{ 1575}}\,\sqrt {5} \left( \ln \left( 1/2+1/2\,\sqrt {5} \right) \right) ^{7}{x}^{7}+O \left( {x}^{9} \right) ) \right\} </math> *<math>fch(x) \approx {(1/5)*\sqrt(5)*(5+\sqrt(5))/(\sqrt(5)+1)+(2/5)*\sqrt(5)*ln(1/2+(1/2)*\sqrt(5))*x+(2/5)*\sqrt(5)*(5+\sqrt(5))*ln(1/2+(1/2)*\sqrt(5))^2*x^2/(\sqrt(5)+1)+(4/15)*\sqrt(5)*ln(1/2+(1/2)*\sqrt(5))^3*x^3+(2/15)*\sqrt(5)*(5+\sqrt(5))*ln(1/2+(1/2)*\sqrt(5))^4*x^4/(\sqrt(5)+1)+O(x^5)}</math> *<math>fth(x) \approx {4*ln(1/2+(1/2)*\sqrt(5))*(\sqrt(5)+1)*x/(5+\sqrt(5))-8*ln(1/2+(1/2)*\sqrt(5))^2*(\sqrt(5)+1)^2*x^2/(5+\sqrt(5))^2+(2*(-(8/3)*ln(1/2+(1/2)*\sqrt(5))^3+8*ln(1/2+(1/2)*\sqrt(5))^3*(\sqrt(5)+1)^2/(5+\sqrt(5))^2))*(\sqrt(5)+1)*x^3/(5+\sqrt(5))+O(x^4)} </math> ===渐近展开=== *<math> sFh(x) \approx \left\{ 1/5\,{\frac {\sqrt {5} \left( \left( \sqrt {5}+1 \right) ^{x } \right) ^{2}}{ \left( {2}^{x} \right) ^{2}}}-1/5\,{\frac {\sqrt {5} \left( {2}^{x} \right) ^{2}}{ \left( \left( \sqrt {5}+1 \right) ^{x} \right) ^{2}}} \right\} </math> *<math>cFh(x) \approx \left\{ 2/5\,{\frac { \left( 1/4\,\sqrt {5}+1/4 \right) \sqrt {5} \left( \left( \sqrt {5}+1 \right) ^{x} \right) ^{2}}{ \left( {2}^{x} \right) ^{2}}}+2/5\,{\frac {\sqrt {5} \left( {2}^{x} \right) ^{2}}{ \left( \sqrt {5}+1 \right) \left( \left( \sqrt {5}+1 \right) ^{x} \right) ^{2}}} \right\} </math> ===Heun函数表示=== *<math>sFh(x)=4/5\,\sqrt {5}x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0, 1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) {\it HeunB} \left( 2,0,0 ,0,2\,\sqrt {{\frac {x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0 ,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}} \right) \left( \sqrt {5}+1 \right) ^{-1} \left( {{\rm e}^{2\,{\frac {x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac { \sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}}} \right) ^{-1} </math> *<math>cFh(x)=2/5\,i\sqrt {5} \left( 2\,x+1 \right) \left( \sqrt {5}-1 \right) { \it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {{\frac { \left( -2\,x-1 \right) \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{ \frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}+1/2\,i\pi } \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5} +1}} \right) \left( \sqrt {5}+1 \right) ^{-1} \left( {{\rm e}^{1/2\,{ \frac {-4\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt { 5}+1}} \right) x\sqrt {5}+4\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac { \sqrt {5}-1}{\sqrt {5}+1}} \right) x-2\,{\it HeunC} \left( 0,1,0,0,1/2 ,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) \sqrt {5}+2\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) +i\pi \,\sqrt {5}+i\pi }{\sqrt {5}+1}}}} \right) ^{-1}+1/5\,\sqrt {5}\pi \,{ \it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {{\frac { \left( -2\,x-1 \right) \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{ \frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}+1/2\,i\pi } \right) \left( {{\rm e}^{1/2\,{\frac {-4\,{\it HeunC} \left( 0,1,0,0 ,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) x\sqrt {5}+4\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) x -2\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) \sqrt {5}+2\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5} -1}{\sqrt {5}+1}} \right) +i\pi \,\sqrt {5}+i\pi }{\sqrt {5}+1}}}} \right) ^{-1} </math> *<math>tFh(x)=4\,x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) {\it HeunB} \left( 2,0,0,0,2\, \sqrt {{\frac {x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0 ,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}} \right) {{\rm e}^{1/2\,{\frac {-4\,{\it HeunC} \left( 0,1,0,0,1/2,{ \frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) x\sqrt {5}+4\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) x-2\,{ \it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) \sqrt {5}+2\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5} -1}{\sqrt {5}+1}} \right) +i\pi \,\sqrt {5}+i\pi }{\sqrt {5}+1}}}} \left( \sqrt {5}+1 \right) ^{-1} \left( {{\rm e}^{2\,{\frac {x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac { \sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}}} \right) ^{-1} \left( {\frac {2\,i \left( 2\,x+1 \right) \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5} +1}} \right) }{\sqrt {5}+1}}+\pi \right) ^{-1} \left( {\it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {{\frac { \left( -2\,x-1 \right) \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac { \sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}+1/2\,i\pi } \right) \right) ^{-1} </math> ==斐波那契双曲反函数== ;反双曲正弦 *<math>arcsFh(z)=1/2\,{\frac {{\it arcsinh} \left( 1/2\,z\sqrt {5} \right) }{\ln \left( 1/2+1/2\,\sqrt {5} \right) }} </math>满足<math>sFh(arcsFh(y))=y</math> ;反双曲余弦 *<math> arccFh(z)= -1/2\,{\frac {\ln \left( 1/2+1/2\,\sqrt {5} \right) -{\it arccosh} \left( 1/2\,z\sqrt {5} \right) }{\ln \left( 1/2+1/2\,\sqrt {5} \right) }} </math>满足<math>arccFh(cFh(z))=z</math> ;反双曲正切 *<math>arctFh(z)= 1/4\,\ln \left( -{\frac {-z+z\sqrt {5}+2}{z+z\sqrt {5}-2}} \right) \left( \ln \left( 1/2+1/2\,\sqrt {5} \right) \right) ^{-1} </math>满足<math>arctFh(tFh(z))=z</math> ===Heun函数表示=== <math>arcsFh(z)=1/2\,z\sqrt {5} \left( \sqrt {5}+1 \right) {\it HeunC} \left( 0,1/2,0,0 ,1/4,5\,{\frac {{z}^{2}}{5\,{z}^{2}+4}} \right) {\frac {1}{\sqrt {5\,{ z}^{2}+4}}} \left( \sqrt {5}-1 \right) ^{-1} \left( {\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) \right) ^{-1}</math> <math>arccFh(z)=-1/2+ \left( 1/2\,\sqrt {- \left( -2+z\sqrt {5} \right) ^{2}}z\sqrt {5 } \left( \sqrt {5}+1 \right) {\it HeunC} \left( 0,1/2,0,0,1/4,5/4\,{ \frac {{z}^{2}}{5/4\,{z}^{2}-1}} \right) \left( -2+z\sqrt {5} \right) ^{-1}{\frac {1}{\sqrt {-5\,{z}^{2}+4}}} \left( \sqrt {5}-1 \right) ^{-1}-1/4\,{\frac {\sqrt {- \left( -2+z\sqrt {5} \right) ^{2} }\pi \, \left( \sqrt {5}+1 \right) }{ \left( -2+z\sqrt {5} \right) \left( \sqrt {5}-1 \right) }} \right) \left( {\it HeunC} \left( 0,1,0 ,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) \right) ^{-1} </math> <math>arctFh(x)=z=4\,x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{ \frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) {\it HeunB} \left( 2,0,0,0,2 \,\sqrt {{\frac {x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0 ,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}} \right) {{\rm e}^{1/2\,{\frac {-4\,{\it HeunC} \left( 0,1,0,0,1/2,{ \frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) x\sqrt {5}+4\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) x-2\,{ \it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) \sqrt {5}+2\,{\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5} -1}{\sqrt {5}+1}} \right) +i\pi \,\sqrt {5}+i\pi }{\sqrt {5}+1}}}} \left( \sqrt {5}+1 \right) ^{-1} \left( {{\rm e}^{2\,{\frac {x \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac { \sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}}} \right) ^{-1} \left( {\frac {2\,i \left( 2\,x+1 \right) \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac {\sqrt {5}-1}{\sqrt {5} +1}} \right) }{\sqrt {5}+1}}+\pi \right) ^{-1} \left( {\it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {{\frac { \left( -1-2\,x \right) \left( \sqrt {5}-1 \right) {\it HeunC} \left( 0,1,0,0,1/2,{\frac { \sqrt {5}-1}{\sqrt {5}+1}} \right) }{\sqrt {5}+1}}+1/2\,i\pi } \right) \right) ^{-1} </math> ===级数展开=== *<math>arcsFh(z) \approx (1/4\,{\frac {\sqrt {5}}{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}z-{ \frac {5}{96}}\,{\frac {\sqrt {5}}{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}{z}^{3}+{\frac {15}{512}}\,{\frac {\sqrt {5}}{\ln \left( 1 /2+1/2\,\sqrt {5} \right) }}{z}^{5}-{\frac {625}{28672}}\,{\frac { \sqrt {5}}{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}{z}^{7}+{\frac { 21875}{1179648}}\,{\frac {\sqrt {5}}{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}{z}^{9}+O \left( {z}^{11} \right) ) > </math> *<math>arccFh(z) \approx (-1/2\,{\frac {\ln \left( 1/2+1/2\,\sqrt {5} \right) +1/2\,i{\it csgn } \left( i \left( 1/2\,z\sqrt {5}-1 \right) \right) \pi }{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}+1/4\,i{\it csgn} \left( i \left( 1/2\,z\sqrt {5}-1 \right) \right) \sqrt {5} \left( \ln \left( {\frac {1}{2}}+1/2\,\sqrt {5} \right) \right) ^{-1}z+{\frac { 5}{96}}\,i\sqrt {5}{\it csgn} \left( i \left( 1/2\,z\sqrt {5}-1 \right) \right) \left( \ln \left( {\frac {1}{2}}+1/2\,\sqrt {5} \right) \right) ^{-1}{z}^{3}+{\frac {15}{512}}\,i\sqrt {5}{\it csgn} \left( i \left( 1/2\,z\sqrt {5}-1 \right) \right) \left( \ln \left( {\frac {1}{2}}+1/2\,\sqrt {5} \right) \right) ^{-1}{z}^{5}+{ \frac {625}{28672}}\,i\sqrt {5}{\it csgn} \left( i \left( 1/2\,z\sqrt {5}-1 \right) \right) \left( \ln \left( {\frac {1}{2}}+1/2\,\sqrt { 5} \right) \right) ^{-1}{z}^{7}+{\frac {21875}{1179648}}\,i\sqrt {5}{ \it csgn} \left( i \left( 1/2\,z\sqrt {5}-1 \right) \right) \left( \ln \left( {\frac {1}{2}}+1/2\,\sqrt {5} \right) \right) ^{-1}{z}^{9 }+O \left( {z}^{11} \right) ) > </math> *<math>arctFh(z) \approx (1/4\,{\frac {\sqrt {5}}{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}z+1/ 4\,{\frac {1/2\,\sqrt {5} \left( \sqrt {5}+1 \right) -5/2}{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}{z}^{2}+1/4\,{\frac {-5/6\,\sqrt {5}-5/2+1/4\,\sqrt {5} \left( \sqrt {5}+1 \right) ^{2}}{\ln \left( 1/ 2+1/2\,\sqrt {5} \right) }}{z}^{3}+1/4\,{\frac {-{\frac {5}{16}}\, \left( \sqrt {5}+1 \right) ^{2}+1/8\,\sqrt {5} \left( \sqrt {5}+1 \right) ^{3}-5/8\,\sqrt {5}-{\frac {25}{8}}}{\ln \left( 1/2+1/2\, \sqrt {5} \right) }}{z}^{4}+O \left( {z}^{5} \right) ) > </math> ===渐近展开=== *<math>arcsFh(z) \approx 1/2\,{\frac {1/2\,\ln \left( 5 \right) +\ln \left( z \right) }{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}+1/10\,{\frac {1}{\ln \left( 1/2 +1/2\,\sqrt {5} \right) {z}^{2}}}-{\frac {3}{100}}\,{\frac {1}{\ln \left( 1/2+1/2\,\sqrt {5} \right) {z}^{4}}}+{\frac {1}{75}}\,{\frac { 1}{\ln \left( 1/2+1/2\,\sqrt {5} \right) {z}^{6}}}-{\frac {7}{1000}} \,{\frac {1}{\ln \left( 1/2+1/2\,\sqrt {5} \right) {z}^{8}}}+O \left( {z}^{-10} \right) </math> *<math>arccFh(z) \approx -1/2\,{\frac {\ln \left( 1/2+1/2\,\sqrt {5} \right) -1/2\,\ln \left( 5 \right) -\ln \left( z \right) }{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}-1/10\,{\frac {1}{\ln \left( 1/2+1/2\,\sqrt {5} \right) {z}^{2}}}-{\frac {3}{100}}\,{\frac {1}{\ln \left( 1/2+1/2\, \sqrt {5} \right) {z}^{4}}}-{\frac {1}{75}}\,{\frac {1}{\ln \left( 1/ 2+1/2\,\sqrt {5} \right) {z}^{6}}}-{\frac {7}{1000}}\,{\frac {1}{\ln \left( 1/2+1/2\,\sqrt {5} \right) {z}^{8}}}+O \left( {z}^{-10} \right) </math> *<math>arctFh(z) \approx 1/4\,{\frac {\ln \left( {\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) +i \pi }{\ln \left( 1/2+1/2\,\sqrt {5} \right) }}+1/4\,{\frac {2+2\,{ \frac {\sqrt {5}-1}{\sqrt {5}+1}}}{ \left( \sqrt {5}-1 \right) \ln \left( 1/2+1/2\,\sqrt {5} \right) z}}+1/4\,{\frac {8\,{\frac {\sqrt { 5}}{ \left( \sqrt {5}+1 \right) ^{2} \left( \sqrt {5}-1 \right) }}-2\, {\frac {\sqrt {5} \left( 2+2\,{\frac {\sqrt {5}-1}{\sqrt {5}+1}} \right) }{ \left( \sqrt {5}+1 \right) \left( \sqrt {5}-1 \right) ^{2 }}}}{\ln \left( 1/2+1/2\,\sqrt {5} \right) {z}^{2}}}+O \left( {z}^{-3 } \right) </math> ==反函数图== {| |[[File:Fibonacci hyperbolic arcsine 2D.png|thumb|Fibonacci hyperbolic arcsine 2D]] |[[File:Fibonacci hyperbolic arcsine imaginary part 3D plot.png|thumb|斐氏正弦虚数三维图]] |[[File:Fibonacci hyperbolic arcsine 2D density plot.png|thumb|Fibonacci hyperbolic arcsine 2D density plot]] |[[File:Fibonacci hyperbolic sine imaginary part density plot.png|thumb|Fibonacci hyperbolic sine imaginary part density plot]] |} {| |[[File:Fibonacci hyperbolic arccosine 2D.png|thumb|Fibonacci hyperbolic arccosine 2D]] |[[File:Fibonacci hyperbolic arccosine 2D density plot.png|thumb|Fibonacci hyperbolic arccosine 2D density plot]] |[[File:Fibonacci hyperbolic arccosine imaginary part 3D plot.png|thumb|斐氏余弦虚数三维图]] |} {| |[[File:Fibonacci hyperbolic tangent imaginary part density plot.png|thumb|Fibonacci hyperbolic tangent imaginary part density plot]] |[[File:Fibonacci hyperbolic arctan 2D.png|thumb|Fibonacci hyperbolic arctan 2D]] |[[File:Fibonacci hyperbolic arctan imaginary part 3D plot.png|thumb|斐氏正切虚数三维图]] |} ==参考文献== <references/> [[Category:特殊函数]]
该页面使用的模板:
Template:Cite mathworld
(
查看源代码
)
返回
斐波那契双曲函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息