查看“︁拋物面坐標系”︁的源代码
←
拋物面坐標系
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''拋物面坐標系'''({{lang-en|Paraboloidal coordinates}})是一種三維[[正交坐標系]],是二維[[拋物線坐標系]]的推廣。與大多數的三維[[正交坐標系]]的生成方法不同,拋物面坐標系不是由任何二維正交坐標系延伸或旋轉生成的。 [[File:Parabolic coordinates 3D.png|thumb|right|200px|三维抛物面坐标系的[[坐标表面]]。]] ==基本公式== 從[[直角坐標]] <math>(x,\ y,\ z)</math> 變換至拋物面坐標 <math>( \lambda,\ \mu,\ \nu )</math> : :<math>x^{2} = \frac{\left( A - \lambda \right) \left( A - \mu \right) \left( A - \nu \right)}{B - A}</math> 、 :<math>y^{2} = \frac{\left( B - \lambda \right) \left( B - \mu \right) \left( B - \nu \right)}{A - B}</math> 、 :<math>z = \frac{1}{2} \left( A + B - \lambda - \mu -\nu \right)</math> ; 其中,拋物面坐標遵守以下限制: :<math>\lambda < B < \mu < A < \nu</math> 。 ==坐標曲面== <math>\lambda</math>-坐標曲面是[[橢圓拋物面]] ({{lang|en|elliptic paraboloid}}) : :<math>\frac{x^{2}}{\lambda - A}+\frac{y^{2}}{\lambda - B}=2z+\lambda</math> 。 <math>\mu</math>-坐標曲面是[[雙曲拋物面]] : :<math>\frac{x^{2}}{\mu - A}+\frac{y^{2}}{\mu - B}=2z+\mu</math> 。 <math>\nu</math>-坐標曲面也是橢圓拋物面 : :<math>\frac{x^{2}}{\nu - A} + \frac{y^{2}}{\nu - B} = 2z + \nu</math> 。 ==標度因子== 拋物面坐標的標度因子分別為 :<math>h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right)}{ \left( A - \lambda \right) \left( B - \lambda \right)}}</math> 、 :<math>h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \mu \right) \left( \lambda - \mu \right)}{ \left( A - \mu \right) \left( B - \mu \right)}}</math> 、 :<math>h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \nu \right) \left( \mu - \nu \right)}{ \left( A - \nu \right) \left( B - \nu \right)}}</math> 。 無窮小體積元素等於 :<math>dV = \frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right) \left( \nu - \mu\right)}{8\sqrt{\left( A - \lambda \right) \left( B - \lambda \right) \left( A - \mu \right) \left( \mu - B \right) \left( \nu - A \right) \left( \nu - B \right) }} \ d\lambda d\mu d\nu </math> 。 其它微分算子,例如 <math>\nabla \cdot \mathbf{F}</math> 、<math>\nabla \times \mathbf{F}</math> ,都可以用橢球坐標表達,只需要將標度因子代入[[正交坐標系|正交坐標]]條目內對應的一般公式。 ==參閱== {{正交坐標系}} ==參考目錄== * {{cite book | author = Morse PM, Feshbach H | date = 1953 | title = Methods of Theoretical Physics, Part I | publisher = McGraw-Hill | location = New York | id = ISBN 0-07-043316-X| pages = p. 664}} * {{cite book | author = Margenau H, Murphy GM | year = 1956 | title = The Mathematics of Physics and Chemistry | publisher = D. van Nostrand | location = New York | pages = pp. 184–185 }} * {{cite book | author = Korn GA, Korn TM |date = 1961 | title = Mathematical Handbook for Scientists and Engineers | publisher = McGraw-Hill | location = New York | id =ASIN B0000CKZX7 | pages = p. 180}} * {{cite book | author = Arfken G | date = 1970 | title = Mathematical Methods for Physicists | edition = 2nd ed. | publisher = Academic Press | location = Orlando, FL | pages = pp. 119–120}} * {{cite book | author = Sauer R, Szabó I | date = 1967 | title = Mathematische Hilfsmittel des Ingenieurs | publisher = Springer Verlag | location = New York | pages = p. 98}} * {{cite book | author = Zwillinger D | date = 1992 | title = Handbook of Integration | publisher = Jones and Bartlett | location = Boston, MA | isbn = 0-86720-293-9 | pages = p. 114}} Same as Morse & Feshbach (1953), 代替 ''u''<sub>''k''</sub> 為 ξ<sub>''k''</sub>. * {{cite book | author = Moon P, Spencer DE | date = 1988 | chapter = Paraboloidal Coordinates (μ,\ ν,\ λ) | title = Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions | edition = corrected 2nd ed., 3rd print ed. | publisher = Springer-Verlag | location = New York | pages = pp. 44–48 (Table 1.11) | isbn = 978-0387184302}} ==外部連結== {{Portal|数学}} * [http://mathworld.wolfram.com/ConfocalParaboloidalCoordinates.html MathWorld 的拋物面坐標系] {{Wayback|url=http://mathworld.wolfram.com/ConfocalParaboloidalCoordinates.html |date=20210309100132 }} [[Category:坐標系|P]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Portal
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:正交坐標系
(
查看源代码
)
返回
拋物面坐標系
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息