查看“︁拉馬努金和”︁的源代码
←
拉馬努金和
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{distinguish|拉馬努金求和}} 在[[數學]]的分支領域[[數論]]中,'''拉馬努金和'''({{lang-en|Ramanujan's sum}})常標示為<math>c_q(n)</math>,為一個帶有兩[[正整數]]變數<math>q</math>以及<math>n</math>的函數,其定義如下: :<math>c_q(n)= \sum_{a=1\atop (a,q)=1}^q e^{2 \pi i \tfrac{a}{q} n},</math> 其中<math>(a,q)=1</math>表示<math>a</math>只能是與<math>q</math>[[互質]]的數。 [[斯里尼瓦瑟·拉馬努金]]於1918年的一篇論文中引入這項和的觀念。<ref>Ramanujan, ''On Certain Trigonometric Sums ...'' <blockquote>These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.</blockquote>(''Papers'', p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind ''Vorlesungen über Zahlentheorie'', 4th ed.</ref>拉馬努金和也用在{{le|維諾格拉多夫定理|Vinogradov's theorem}}的證明,此定理指出:任何足夠大的[[奇數]]可為三個[[質數]]的和。<ref>Nathanson, ch. 8</ref> == 本文符號彙整 == 若[[整數]]''a''與''b'',有關係<math>a\mid b</math>(唸作「''a''整除''b''」),表示存在一個整數''c''使得''b'' = ''ac'';相似地,<math>a\nmid b</math>表示「''a''無法整除''b''」。 求和符號 :<math>\sum_{d\,\mid\,m}f(d)</math> 表示''d''只採用其正整數[[因數]]''m'',亦即 :<math>\sum_{d\,\mid\,12}f(d) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12) </math>。 另外用到的有: * <math>(a,\,b)\;</math>為[[最大公因數]], * <math>\phi(n)\;</math>為[[歐拉總計函數]], * <math>\mu(n)\;</math>為[[莫比烏斯函數]],以及 * <math>\zeta(s)\;</math>為[[黎曼ζ函數]]。 == ''c''<sub>''q''</sub>(''n'')的數學式 == ===三角函數=== 下面的式子源自於定義、[[歐拉公式]]<math>e^{ix}= \cos x + i \sin x</math>以及基本[[三角函數]]恆等式: :<math>\begin{align} c_1(n) &= 1 \\ c_2(n) &= \cos n\pi \\ c_3(n) &= 2\cos \tfrac23 n\pi \\ c_4(n) &= 2\cos \tfrac12 n\pi \\ c_5(n) &= 2\cos \tfrac25 n\pi + 2\cos \tfrac45 n\pi \\ c_6(n) &= 2\cos \tfrac13 n\pi \\ c_7(n) &= 2\cos \tfrac27 n\pi + 2\cos \tfrac47 n\pi + 2\cos \tfrac67 n\pi \\ c_8(n) &= 2\cos \tfrac14 n\pi + 2\cos \tfrac34 n\pi \\ c_9(n) &= 2\cos \tfrac29 n\pi + 2\cos \tfrac49 n\pi + 2\cos \tfrac89 n\pi \\ c_{10}(n)&= 2\cos \tfrac15 n\pi + 2\cos \tfrac35 n\pi \\ \end{align}</math> 等等({{OEIS2C|A000012}}, {{OEIS2C|A033999}}, {{OEIS2C|A099837}}, {{OEIS2C|A176742}},.., {{OEIS2C|A100051}}, ...)。這些式子顯示出''c<sub>q</sub>''(''n'')為[[實數]]。 == 拉馬努金展開式 == == 參考文獻 == {{reflist}} ===書目=== *{{citation | last1 = Hardy | first1 = G. H. | title = Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work | publisher = AMS / Chelsea | location = Providence RI | year = 1999 | isbn = 978-0-8218-2023-0}} *{{Citation | last1=Hardy | first1=G. H. | author1-link=G. H. Hardy | last2=Wright | first2=E. M. | author2-link=E. M. Wright | edition={{{edition|6th}}} | others={{#if: {{{edition|}}}||Revised by {{tsl|en|Roger Heath-Brown||D. R. Heath-Brown}} and {{tsl|en|Joseph H. Silverman||J. H. Silverman}}. Foreword by [[安德魯·懷爾斯|Andrew Wiles]].}} | title=An Introduction to the Theory of Numbers | publisher={{#if: {{{edition|}}} | Clarendon Press | [[牛津大學出版社|Oxford University Press]] }} | location=Oxford | series= | isbn={{#switch: {{{edition|}}} | 4th = 0-19-853310-1 | 5th = 0-19-853171-0 | 978-0-19-921986-5 }} | mr= | zbl= {{#switch: {{{edition|}}} | 5th = 0423.10001 | 4th = 0086.25803 | 1159.11001 }} | year={{#switch: {{{edition|}}} | 4th = 1960 | 5th = 1979 | 2008 }} | origyear=1938}} *{{citation | last1 = Knopfmacher | first1 = John | title = Abstract Analytic Number Theory | publisher = Dover | edition=2nd | zbl=0743.11002 | location = New York | year = 1990 | origyear=1975 | isbn = 0-486-66344-2}} *{{citation | title=Additive Number Theory: the Classical Bases | volume=164 | series=Graduate Texts in Mathematics | last=Nathanson | first=Melvyn B. | publisher=Springer-Verlag | year=1996 | isbn=0-387-94656-X | zbl= 0859.11002 | at= Section A.7 }}. *{{cite journal | title=Some formulas involving Ramanujan sums | url=https://archive.org/details/sim_canadian-journal-of-mathematics_1962_14_2/page/284 | year=1962|journal=Canad. J. Math. | pages=284-286| doi=10.4153/CJM-1962-019-8 |first1=C. A. | last1=Nicol |volume=14 }} *{{citation | last1 = Ramanujan | first1 = Srinivasa | title = On Certain Trigonometric Sums and their Applications in the Theory of Numbers | journal = Transactions of the Cambridge Philosophical Society | volume = 22 | issue = 15 | year = 1918 | pages = 259–276}} (pp. 179–199 of his ''Collected Papers'') *{{citation | last1 = Ramanujan | first1 = Srinivasa | title = On Certain Arithmetical Functions | journal = Transactions of the Cambridge Philosophical Society | volume = 22 | issue = 9 | year = 1916 | pages = 159–184}} (pp. 136–163 of his ''Collected Papers'') *{{citation | last1 = Ramanujan | first1 = Srinivasa | title = Collected Papers | publisher = AMS / Chelsea | location = Providence RI | year = 2000 | isbn = 978-0-8218-2076-6}} * {{citation | first1=Wolfgang | last1=Schwarz | first2=Jürgen | last2=Spilker | title=Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties | year=1994 | publisher=[[劍橋大學出版社|Cambridge University Press]] | isbn=0-521-42725-8 | zbl=0807.11001 | series=London Mathematical Society Lecture Note Series | volume=184 }} [[Category:数论]] [[Category:数论中的平方]] [[Category:斯里尼瓦瑟·拉马努金]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Distinguish
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:OEIS2C
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
拉馬努金和
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息