查看“︁截角五维超正方体”︁的源代码
←
截角五维超正方体
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{Infobox polytope | name = 截角五维超正方体 | imagename = 5-cube t01.svg | caption = | polytope = 截角五维超正方体 | Type = [[五维均匀多胞体]] | Dimension = 5 | dim1 = [[四维]] | count1 = 42 | group_type = | Cell =200 | Face =400 | Edge =400 | Vertice =160 | Vertice_type =[[File:Truncated 5-cube verf.png|40px]]<BR>Elongated tetrahedral pyramid | Schläfli =t{4,3,3,3} | Symmetry_group = | dual = | Properties =[[Convex polytope|convex]] | Index_references = | Coxeter_group =BC<sub>5</sub>, [3,3,3,4] | Coxeter_diagram = {{CDD|node_1|4|node_1|3|node|3|node|3|node}} }} ''截角五维超正方体''可以通过在每条棱距离顶点<math>1/(\sqrt{2}+2)</math>处截断[[五维超正方体]]的顶点来得到。每个被截断的顶点会产生一个新的[[正五胞体]]。 ==坐标== 一个棱长为2的截角五维超正方体的每个顶点的[[笛卡儿坐标系]]坐标为: :<math>\left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right)</math> == 投影 == {| class=wikitable |+ [[正交投影]] |- align=center ![[考克斯特平面]] !B<sub>5</sub> !B<sub>4</sub> / D<sub>5</sub> !B<sub>3</sub> / D<sub>4</sub> / A<sub>2</sub> |- align=center !Graph |[[File:5-cube t01.svg|150px]] |[[File:5-cube t01_B4.svg|150px]] |[[File:5-cube t01_B3.svg|150px]] |- align=center ![[二面体群]] |[10] |[8] |[6] |- align=center ![[考克斯特平面]] !B<sub>2</sub> !A<sub>3</sub> |- align=center !Graph |[[File:5-cube t01_B2.svg|150px]] |[[File:5-cube t01_A3.svg|150px]] |- align=center ![[二面体群]] |[4] |[4] |} ''截角五维超正方体''是各维度截角[[超方形]]中的第四个: {| class=wikitable |+ 截角超方形 |- align=center |[[File:Regular polygon 8 annotated.svg|60px]] |[[File:3-cube_t01.svg|60px]][[File:Truncated hexahedron.png|60px]] |[[File:4-cube_t01.svg|60px]][[File:Schlegel half-solid truncated tesseract.png|60px]] |[[File:5-cube_t01.svg|60px]][[File:5-cube_t01 A3.svg|60px]] |[[File:6-cube_t01.svg|60px]][[File:6-cube_t01 A5.svg|60px]] |[[File:7-cube_t01.svg|60px]][[File:7-cube_t01 A5.svg|60px]] |[[File:8-cube_t01.svg|60px]][[File:8-cube_t01 A7.svg|60px]] |rowspan=3|... |- align=center |[[八边形]] |[[截角立方体]] |[[截角正八胞体]] |截角五维超正方体 |[[截角六维超正方体]] |[[截角七维超正方体]] |[[截角八维超正方体]] |- align=center |{{CDD|node_1|4|node_1}} |{{CDD|node_1|4|node_1|3|node}} |{{CDD|node_1|4|node_1|3|node|3|node}} |{{CDD|node_1|4|node_1|3|node|3|node|3|node}} |{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node}} |{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node}} |{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} |} == 参考文献 == * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Wayback|url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=20160711140441 }} *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. * {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} o3o3o3x4x - tan, o3o3x3x4o - bittin == 外部链接 == * {{MathWorld|title=Hypercube|urlname=Hypercube}} *{{GlossaryForHyperspace | anchor=Measure | title=Measure polytope }} * [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions] * [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary] {{Wayback|url=http://tetraspace.alkaline.org/glossary.htm |date=20091022011912 }} [[Category:多胞体]]
该页面使用的模板:
Template:CDD
(
查看源代码
)
Template:GlossaryForHyperspace
(
查看源代码
)
Template:Infobox polytope
(
查看源代码
)
Template:KlitzingPolytopes
(
查看源代码
)
Template:MathWorld
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
截角五维超正方体
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息