查看“︁并集”︁的源代码
←
并集
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{noteTA |2=zh-cn:布尔逻辑; zh-hk:布林運算; |G1=Math }} [[File:set_union.png|thumb|A和B的并集]] 在[[集合论]]和[[数学]]的其他分支中,一群[[集合 (数学)|集合]]的'''并集'''(Union)<ref>{{cite book |author=程极泰 |title=[[集合论]] |year=1985 |publisher=国防工业出版社 |edition=第一版 |series=应用数学丛书 |id=15034.2766 |pages=14}}</ref>,是以这群集合的所有元素來构成的集合。 == 有限聯集 == 聯集是由[[公理化集合论]]的[[策梅洛-弗兰克尔集合论#分類公理|分類公理]]來確保其唯一存在的特定集合 <math>A \cup B</math> : :<math>(\forall A)(\forall B)(\forall x)\left\{ (x \in A \cup B) \Leftrightarrow \left[ (x \in A) \vee (x \in B) \right] \right\} </math> 也就是直觀上: :「對所有 <math>x</math> , <math>x \in A \cup B</math> 等價於 <math>x \in A</math> 或 <math>x \in B</math>」 举例: 集合<math>\{1, 2, 3\}</math>和<math>\{2, 3, 4\} </math>的并集是<math>\{1, 2, 3, 4\}</math>。数<math>9</math>'''不属于'''[[素数]]集合<math>\{2, 3, 5, 7, 11,\ldots\}</math>和[[偶数]]集合<math>\{2, 4, 6, 8, 10,\ldots\}</math>的并集,因为<math>9</math>既不是素数,也不是偶数。 更通常的,多个集合的并集可以这样定义: 例如,<math>A,B</math>和<math>C</math>的并集含有所有<math>A</math>的元素,所有<math>B</math>的元素和所有<math>C</math>的元素,而没有其他元素。形式上: :<math>x</math>是<math>A \cup B \cup C</math>的元素,当且仅当<math>x</math>属于<math>A</math>或<math>x</math>属于<math>B</math>或<math>x</math>属于<math>C</math>。 === 代数性质 === 二元并集(两个集合的并集)是一种[[结合律|结合]]运算,即 :<math>A \cup (B \cup C) =(A \cup B)\cup C</math>。事实上,<math>A \cup B \cup C</math>也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。 相似的,并集运算满足[[交换律]],即集合的顺序任意。 [[空集]]是并集运算的[[单位元]]。即<math>\varnothing \cup A = A</math>,对任意集合<math>A</math>。可以将空集当作[[0|零]]个集合的并集。 结合[[交集]]和[[补集]]运算,并集运算使任意[[幂集]]成为[[布尔代数]]。例如,并集和交集相互满足[[分配律]],而且这三种运算满足[[德·摩根律]]。若将并集运算换成[[对称差]]运算,可以获得相应的[[布尔环]]。 == 无限并集 == 由[[公理化集合论]]的[[并集公理]],有唯一的集合 <math>\bigcup\mathcal{M}</math> 滿足: : <math>(\forall \mathcal{M})(\forall x)\left\{ \left(x \in \bigcup\mathcal{M}\right) \Leftrightarrow (\exists A)\left[ \left(A \in \mathcal{M}\right) \wedge (x \in A) \right] \right\}</math> 也就是直觀上「對所有 <math>\mathcal{M}</math> 和所有 <math>x</math> , <math>x \in \bigcup\mathcal{M}</math> 等價於有某個 <math>\mathcal{M}</math> 的下屬集合 <math>A</math> ,使得<math>x \in A</math>」。以上的 <math>\mathcal{M}</math> 可以直觀的視為一個[[集合族]],而把 <math>\bigcup\mathcal{M}</math> 看成對 <math>\mathcal{M}</math> 內的[[集合 (数学)|集合]]取并集,但這個公理並沒有對 <math>\mathcal{M}</math> 下屬集合的數量做出任何限制,所以這個 <math>\bigcup\mathcal{M}</math> 被俗稱為'''任意并集'''或'''无限并集'''。 若 <math>X \subseteq \bigcup\mathcal{M}</math> ,會稱 <math>X</math> 被 <math>\mathcal{M}</math> '''覆蓋'''(cover),也就是直觀上可以用 <math>\mathcal{M}</math> 裡的所有集合疊起來蓋住 <math>X</math>。 例如: 對 <math>\mathcal{M} = \{A,B,C\}</math>,<math>\bigcup\mathcal{M} = A \cup B \cup C</math> ,若 <math>M</math>是[[空集]], <math>\bigcup\mathcal{M}</math> 也是空集。 无限并集有多种表示方法: 可模仿[[求和符号]]記為 : <math>\bigcup_{A\in \mathcal{M}} A</math>。 但大多數人會假設[[指标集]] <math>I</math> 的存在,換句話說 : 若 <math>I \,\overset{A}{\cong}\, \mathcal{M} </math> 則 <math>\bigcup_{i\in I} A(i) := \bigcup \mathcal{M}</math> 在[[指标集]] <math>I</math> 是[[自然数|自然数系]] <math>\N</math> 的情况下,更可以仿[[无穷级数]]來表示,也就是說: : 若 <math>\N \,\overset{A}{\cong}\, \mathcal{M}</math> 則 <math>\bigcup^{\infty}_{i = 0} A(i) := \bigcup \mathcal{M}</math> 也可以更'''粗略直觀'''的將 <math>\bigcup^{\infty}_{i = 0} A(i)</math> 写作<math>A_{0} \cup A_{1} \cup A_{2} \cup \ldots</math>。 === 无限并集的性質 === {{Math theorem | name = 定理(0) | math_statement = <br/> <math> \vdash \bigcup\varnothing = \varnothing </math> }} {| class="mw-collapsible mw-collapsed wikitable" !'''證明''' |- |(1) <math>(\forall x)[\neg(x \in \varnothing)]</math> ([[空集公理]]) (2) <math>\neg(S \in \varnothing) </math>(MP with [[一阶逻辑#量词公理|A4]], 1) (3)<math>(S \in \varnothing) \Rightarrow [\neg(x \in S)] </math>([[一阶逻辑#實質條件|M0]] with 2) (4)<math>\neg\neg(S \in \varnothing) \Rightarrow [\neg(x \in S)] </math>([[一阶逻辑#等價代換|Equv]] with [[一阶逻辑#否定|DN]], 3) (5)<math>\neg\{ [\neg(S \in \varnothing)] \wedge [\neg(x \in S)] \} </math>([[一阶逻辑#等價代換|Equv]] with [[一阶逻辑#德摩根定律|De Morgan]], 4) (6)<math>(\forall S)\big\{ \neg\{ [\neg(S \in \varnothing)] \wedge [\neg(x \in S)] \} \big\} </math>([[一阶逻辑#普遍化元定理|GEN]] with <math>S</math> , 5) (7)<math>\neg(\exists S)\{ [\neg(S \in \varnothing)] \wedge [\neg(x \in S)] \} </math>([[一阶逻辑#等價代換|Equv]] with [[一阶逻辑#否定|DN]], 6) (8)<math>(\forall x)\left\{ \left(x \in \bigcup\varnothing \right) \Leftrightarrow (\exists S)\{ (S \in \varnothing) \wedge (x \in S) \} \right\} </math>(MP with [[并集公理]], [[一阶逻辑#量词公理|A4]]) (9)<math>\left(x \in \bigcup\varnothing \right) \Leftrightarrow (\exists S)\{ (S \in \varnothing) \wedge (x \in S) \} </math>(MP with [[一阶逻辑#量词公理|A4]], 8) (10)<math>\left(x \in \bigcup\varnothing \right) \Rightarrow (\exists S)\{ (S \in \varnothing) \wedge (x \in S) \} </math>(MP with [[一阶逻辑#且與或的直觀意義|AND]] ,9) (11)<math>\neg(\exists S)\{ (S \in \varnothing) \wedge (x \in S) \} \Rightarrow \neg\left(x \in \bigcup\varnothing \right) </math>(MP with [[一阶逻辑#否定|T]], 10) (12)<math>\neg\left(x \in \bigcup\varnothing \right) </math>(MP with 7, 11) (13)<math>(\forall x)\left(x \not\in \bigcup\varnothing \right) </math>([[一阶逻辑#普遍化元定理|GEN]] with <math>x</math> , 12) (14)<math>(y = \varnothing) \Leftrightarrow (\forall x)[\neg(x \in y)]</math> ([[一阶逻辑#新理論的假設|E]]) (15)<math>(\forall y)\{ (y = \varnothing) \Leftrightarrow (\forall x)[\neg(x \in y)] \}</math> ([[一阶逻辑#普遍化元定理|GEN]] with <math>y</math> , 14) (16)<math>\left(\bigcup\varnothing = \varnothing\right) \Leftrightarrow (\forall x)\left[\neg\left(x \in \bigcup\varnothing \right)\right] </math>(MP with [[一阶逻辑#量词公理|A4]], 15) (17) <math>\bigcup\varnothing = \varnothing </math> ([[一阶逻辑#等價代換|Equv]] with 13, 16) |} ==== 比較性質 ==== {{Math theorem | name = 定理(1) | math_statement = <br/> <math> (\mathcal{M} \subseteq \mathcal{N}) \vdash \left(\bigcup\mathcal{M} \subseteq \bigcup\mathcal{N}\right)</math> }} {| class="mw-collapsible mw-collapsed wikitable" !'''證明''' |- |注意到可以從([[一阶逻辑#且與或的直觀意義|AND]])得到 :<math> (\mathcal{P} \Rightarrow \mathcal{Q}),\,(\mathcal{P} \Rightarrow \mathcal{R}),\,\mathcal{P} \vdash \mathcal{Q} \wedge \mathcal{R} </math> 換句話說,從[[一阶逻辑#演繹元定理|演繹元定理]]有 :(u) <math> (\mathcal{P} \Rightarrow \mathcal{Q}),\,(\mathcal{P} \Rightarrow \mathcal{R}) \vdash \mathcal{P} \Rightarrow (\mathcal{Q} \wedge \mathcal{R}) </math> (1) <math>(\forall A)\left[ (A \in \mathcal{M}) \Rightarrow (A \in \mathcal{N}) \right]</math> (Hyp) (2) <math>(A \in \mathcal{M}) \Rightarrow (A \in \mathcal{N})</math>(MP with 1, [[一阶逻辑#量词公理|A4]]) (3) <math>[(a \in A) \wedge (A \in \mathcal{M})] \Rightarrow (A \in \mathcal{M})</math>([[一阶逻辑#且與或的直觀意義|AND]]) (4)<math>[(a \in A) \wedge (A \in \mathcal{M})] \Rightarrow (a \in A)</math>([[一阶逻辑#且與或的直觀意義|AND]]) (5)<math>[(a \in A) \wedge (A \in \mathcal{M})] \Rightarrow (A \in \mathcal{N})</math>([[一阶逻辑#演繹元定理|D1]] with 2, 3) (6)<math>[(a \in A) \wedge (A \in \mathcal{M})] \Rightarrow [(a \in A) \wedge (A \in \mathcal{N})] </math>(u with 4, 5) (7)<math>(\exists A \in \mathcal{M})(a \in A) \Rightarrow (\exists A \in \mathcal{N})(a \in A) </math>([[一阶逻辑#普遍化元定理|GENe]] with <math>A</math>, 6) (8) <math>(\forall x)\left\{ \left(x \in \bigcup\mathcal{M}\right) \Leftrightarrow (\exists A \in \mathcal{M})(x \in A) \right\}</math>(MP with [[并集公理]], [[一阶逻辑#量词公理|A4]]) (9) <math>(\forall x)\left\{ \left(x \in \bigcup\mathcal{N}\right) \Leftrightarrow (\exists A \in \mathcal{N})(x \in A) \right\}</math>(MP with [[并集公理]], [[一阶逻辑#量词公理|A4]]) (10) <math>\left(x \in \bigcup\mathcal{M}\right) \Leftrightarrow (\exists A \in \mathcal{M})(x \in A)</math> (MP with 8, [[一阶逻辑#量词公理|A4]]) (11) <math>\left(x \in \bigcup\mathcal{N}\right) \Leftrightarrow (\exists A \in \mathcal{N})(x \in A)</math> (MP with 9, [[一阶逻辑#量词公理|A4]]) (12) <math>\left(x \in \bigcup\mathcal{M}\right) \Rightarrow (\exists A \in \mathcal{N})(x \in A)</math>([[一阶逻辑#演繹元定理|D1]] with 7, 10) (13) <math>\left(x \in \bigcup\mathcal{M}\right) \Rightarrow \left(x \in \bigcup\mathcal{N}\right)</math>([[一阶逻辑#演繹元定理|D1]] with 11, 12) (14) <math>(\forall x)\left[ \left(x \in \bigcup\mathcal{M}\right) \Rightarrow \left(x \in \bigcup\mathcal{N}\right) \right] </math>([[一阶逻辑#普遍化元定理|GEN]] with <math>a</math> , 13) |} ==== 覆蓋性質 ==== {{Math theorem | name = 定理(2) | math_statement = <br/> <math> \vdash A = \bigcup\mathcal{P}(A) </math> }} 「<math>A</math> 正好就是其[[冪集]]的聯集」,這個定理直觀上可理解成,因為[[冪集]] <math>\mathcal{P}(A)</math> 是以 <math>A</math> 和 <math>A</math> 的[[子集]]為元素,所以 <math>\mathcal{P}(A)</math> 的聯集理當是 <math>A</math> 。 {| class="mw-collapsible mw-collapsed wikitable" !'''證明''' |- |注意到可以從([[一阶逻辑#且與或的直觀意義|AND]])得到 :<math> (\mathcal{P} \Rightarrow \mathcal{Q}),\,(\mathcal{P} \Rightarrow \mathcal{R}),\,\mathcal{P} \vdash \mathcal{Q} \wedge \mathcal{R} </math> 換句話說,從[[一阶逻辑#演繹元定理|演繹元定理]]有 :(u) <math> (\mathcal{P} \Rightarrow \mathcal{Q}),\,(\mathcal{P} \Rightarrow \mathcal{R}) \vdash \mathcal{P} \Rightarrow (\mathcal{Q} \wedge \mathcal{R}) </math> (1)<math>(\forall x)\left\{ \left[x \in \bigcup\mathcal{P}(A)\right] \Leftrightarrow (\exists S)\{ [S \in \mathcal{P}(A)] \wedge (x \in S) \} \right\} </math>(MP with [[并集公理]], [[一阶逻辑#量词公理|A4]]) (2) <math>(\forall S)\{ [S \in \mathcal{P}(A)] \Leftrightarrow (S \subseteq A) \} </math>([[幂集公理]]) (3) <math>[S \in \mathcal{P}(A)] \Leftrightarrow (S \subseteq A) </math>(MP with [[一阶逻辑#量词公理|A4]] ,2) (4) <math>(\forall x)\left\{ \left[x \in \bigcup\mathcal{P}(A)\right] \Leftrightarrow (\exists S)[ (S \subseteq A) \wedge (x \in S) ] \right\} </math> ([[一阶逻辑#等價代換|Equv]] with 1, 3) (5) <math>[(S \subseteq A) \wedge (x \in S)] \Rightarrow (S \subseteq A) </math>([[一阶逻辑#且與或的直觀意義|AND]]) (6) <math>(\forall x)[ (x \in S) \Rightarrow (x \in A) ] \Rightarrow [(x \in S) \Rightarrow (x \in A)] </math>([[一阶逻辑#量词公理|A4]]) (7) <math>[(S \subseteq A) \wedge (x \in S)] \Rightarrow [(x \in S) \Rightarrow (x \in A)] </math>([[一阶逻辑#演繹元定理|D1]] with 5, 6) (8) <math>[(S \subseteq A) \wedge (x \in S)] \Rightarrow (x \in S) </math>([[一阶逻辑#且與或的直觀意義|AND]]) (9) <math>[(S \subseteq A) \wedge (x \in S)] \Rightarrow \{ (x \in S) \wedge [(x \in S) \Rightarrow (x \in A)] \} </math>(u with 7, 8) 注意到 :<math> (x \in S),\, [(x \in S) \Rightarrow (x \in A)] \vdash (x \in A) </math> 再對上式套用([[一阶逻辑#且與或的直觀意義|AND]])就有 :<math> \{ (x \in S) \wedge [(x \in S) \Rightarrow (x \in A)] \} \vdash (x \in A) </math>(a) (10') <math>[(S \subseteq A) \wedge (x \in S)] \Rightarrow (x \in A) </math>([[一阶逻辑#演繹元定理|D1]] with a, 9) (11') <math>(\exists S)[ (S \subseteq A) \wedge (x \in S) ] \Rightarrow (x \in A) </math>([[一阶逻辑#普遍化元定理|GENe]] with <math>S</math>, 10') (12') <math>(\forall S)\{\neg[ (S \subseteq A) \wedge (x \in S) ]\} \Rightarrow \{\neg[ (A \subseteq A) \wedge (x \in A) ]\} </math> ([[一阶逻辑#量词公理|A4]]) (13') <math>[ (A \subseteq A) \wedge (x \in A) ] \Rightarrow (\exists S)[ (S \subseteq A) \wedge (x \in S) ] </math> (MP with [[一阶逻辑#否定|T]], 12') (14') <math>(x \in A) \Rightarrow (x \in A)</math> ([[一阶逻辑#定理與證明|I]]) (15') <math>A \subseteq A</math> ([[一阶逻辑#普遍化元定理|GEN]] with <math>x</math> , 14') 注意到([[一阶逻辑#且與或的直觀意義|AND]])依據[[一阶逻辑#演繹元定理|演繹定理]]可改寫為 :<math> (A \subseteq A) \vdash (x \in A) \Rightarrow [(A \subseteq A) \wedge (x \in A)] </math>(b) (16<nowiki>''</nowiki>) <math> (x \in A) \Rightarrow [(A \subseteq A) \wedge (x \in A)] </math> (b with 15') (17<nowiki>''</nowiki>) <math>(x \in A) \Rightarrow (\exists S)[ (S \subseteq A) \wedge (x \in S) ] </math> ([[一阶逻辑#演繹元定理|D1]] with 13<nowiki>', 16''</nowiki>) (18<nowiki>''</nowiki>) <math>(x \in A) \Leftrightarrow (\exists S)[ (S \subseteq A) \wedge (x \in S) ] </math> ([[一阶逻辑#且與或的直觀意義|AND]] with 11<nowiki>', 17''</nowiki>) (19<nowiki>''</nowiki>) <math>(\forall x)\left\{ \left[x \in \bigcup\mathcal{P}(A)\right] \Leftrightarrow (x \in A) \right\} </math>([[一阶逻辑#等價代換|Equv]] with 4, 18<nowiki>'''</nowiki>) |} {{Math theorem | name = 定理(3) | math_statement = <br/> <math>\left(\bigcup\mathcal{M} \subseteq A \right) \vdash (\forall M \in \mathcal{M})(M \subseteq A)</math> }} 直觀上,這個定理說「一群集合的聯集包含於 <math>A</math> ,則它們個個都包含於 <math>A</math> 」 {| class="mw-collapsible mw-collapsed wikitable" !'''證明''' |- |(1) <math>(\forall a)\left[ (\exists M \in \mathcal{M})(a \in M) \Rightarrow (a \in A) \right]</math> (Hyp) (2) <math>[(M \in \mathcal{M}) \wedge (a \in M)] \Rightarrow (\exists M \in \mathcal{M})(a \in M)</math> ([[一阶逻辑#量词公理|A4]] and [[一阶逻辑#否定|T]]) (3) <math>(\exists M \in \mathcal{M})(a \in M) \Rightarrow (a \in A)</math> (MP with 1, [[一阶逻辑#量词公理|A4]]) (4) <math>[(M \in \mathcal{M}) \wedge (a \in M)] \Rightarrow (a \in A) </math> ([[一阶逻辑#演繹元定理|D1]] with 2, 3) (5) <math>(M \in \mathcal{M}) \Rightarrow [(a \in M) \Rightarrow (a \in A)] </math> (MP with [[一阶逻辑#量詞的簡寫|abb]], 4) (6) <math>(\forall a)\{ (M \in \mathcal{M}) \Rightarrow [(a \in M) \Rightarrow (a \in A)] \} </math> ([[一阶逻辑#普遍化元定理|GEN]] with <math>a</math> , 5) (7) <math>(M \in \mathcal{M}) \Rightarrow (\forall a)[(a \in M) \Rightarrow (a \in A)] </math> (MP with [[一阶逻辑#量词公理|A5]] , 6) (8) <math>(\forall M)\{ (M \in \mathcal{M}) \Rightarrow (\forall a)[(a \in M) \Rightarrow (a \in A)] \} </math> ([[一阶逻辑#普遍化元定理|GEN]] with <math>M</math> , 7) |} {{Math theorem | name = 定理(4) | math_statement = <br/> <math> \vdash \left(A = \bigcup\mathcal{M}\right) \Rightarrow \left\{A \subseteq \bigcup\mathcal[\mathcal{M} \cup \mathcal{P}(A)]\right\} </math> }}直觀上,這個定理說「集族 <math>\mathcal{M}</math> 的聯集為 <math>A</math> ,則對 <math>A</math> 的每點 <math>a</math> ,都可從 <math>\mathcal{M}</math> 裡找到一個 <math>a</math> 的鄰域 <math>M</math> ,且這個鄰域不會比 <math>A</math> 大 」 {| class="mw-collapsible mw-collapsed wikitable" !'''證明''' |- |注意到可以從([[一阶逻辑#且與或的直觀意義|AND]])得到 :<math> (\mathcal{P} \Rightarrow \mathcal{Q}),\,(\mathcal{P} \Rightarrow \mathcal{R}),\,\mathcal{P} \vdash \mathcal{Q} \wedge \mathcal{R} </math> 換句話說,從[[一阶逻辑#演繹元定理|演繹元定理]]有 :(u) <math> (\mathcal{P} \Rightarrow \mathcal{Q}),\,(\mathcal{P} \Rightarrow \mathcal{R}) \vdash \mathcal{P} \Rightarrow (\mathcal{Q} \wedge \mathcal{R}) </math> (1) <math>(\forall a)\left[ (a \in A) \Leftrightarrow (\exists M \in \mathcal{M})(a \in M) \right]</math> (Hyp) (2) <math>(\forall M \in \mathcal{M})(M \subseteq A)</math>(MP with 1, 定理3) (3) <math>(M \in \mathcal{M}) \Rightarrow (M \subseteq A)</math>(MP with [[一阶逻辑#量词公理|A4]], 2) (4) <math>[(a \in M) \wedge (M \in \mathcal{M})] \Rightarrow (M \in \mathcal{M})</math>([[一阶逻辑#且與或的直觀意義|AND]]) (5) <math>[(a \in M) \wedge (M \in \mathcal{M})] \Rightarrow (a \in M)</math>([[一阶逻辑#且與或的直觀意義|AND]]) (6) <math>[(a \in M) \wedge (M \in \mathcal{M})] \Rightarrow (M \in \mathcal{M})</math>([[一阶逻辑#且與或的直觀意義|AND]]) (7) <math>[(a \in M) \wedge (M \in \mathcal{M})] \Rightarrow (M \subseteq A)</math> ([[一阶逻辑#演繹元定理|D1]] with 3, 4) (8) <math>[(a \in M) \wedge (M \in \mathcal{M})] \Rightarrow [(a \in M) \wedge (M \in \mathcal{M})]</math>(a with 5, 6) (9) <math>[(a \in M) \wedge (M \in \mathcal{M})] \Rightarrow [(a \in M) \wedge (M \in \mathcal{M}) \wedge (M \subseteq A)]</math>(a with 7, 8) (10) <math>(\exists M \in \mathcal{M})(a \in M) \Rightarrow (\exists M \in \mathcal{M})[(a \in M) \wedge (M \subseteq A)]</math>([[一阶逻辑#普遍化元定理|GENe]] with <math>M</math>, 9) (11) <math>(a \in A) \Leftrightarrow (\exists M \in \mathcal{M})(a \in M) </math>(MP with [[一阶逻辑#量词公理|A4]], 1) (12) <math>(a \in A) \Rightarrow (\exists M \in \mathcal{M})(a \in M) </math>([[一阶逻辑#且與或的直觀意義|AND]] with 11) (13) <math>(a \in A) \Rightarrow (\exists M \in \mathcal{M})[(a \in M) \wedge (M \subseteq A)] </math>([[一阶逻辑#演繹元定理|D1]] with 10, 12) (14) <math>(\forall a \in A)(\exists M \in \mathcal{M})[(a \in M) \wedge (M \subseteq A)] </math>([[一阶逻辑#普遍化元定理|GEN]] with <math>a</math>, 13) (15)<math>(\forall S)\{ [S \in \mathcal{P}(A)] \Leftrightarrow (S \subseteq A) \} </math>([[幂集公理]]) (16)<math>[M \in \mathcal{P}(A)] \Leftrightarrow (M \subseteq A) </math>(MP with [[一阶逻辑#量词公理|A4]], 15) (17)<math>(\forall a \in A)(\exists M \in \mathcal{M})\{(a \in M) \wedge [M \in \mathcal{P}(A)]\} </math>([[一阶逻辑#等價代換|Equv]] with 14, 16) (18) <math>(\forall A)(\forall B)(\forall x)\left\{ (x \in A \cap B) \Leftrightarrow \left[ (x \in A) \wedge (x \in B) \right] \right\} </math>([[交集#有限交集|有限交集]]) (19)<math>(\forall B)(\forall x)\left\{ (x \in \mathcal{M} \cap B) \Leftrightarrow \left[ (x \in \mathcal{M}) \wedge (x \in B) \right] \right\} </math>(MP with [[一阶逻辑#量词公理|A4]], 18) (20)<math>(\forall x)\big\{ [x \in \mathcal{M} \cap \mathcal{P}(A)] \Leftrightarrow \left\{ (x \in \mathcal{M}) \wedge [x \in \mathcal{P}(A)] \right\} \big\} </math>(MP with [[一阶逻辑#量词公理|A4]], 19) (21)<math>[M \in \mathcal{M} \cap \mathcal{P}(A)] \Leftrightarrow \left\{ (M \in \mathcal{M}) \wedge [M \in \mathcal{P}(A)] \right\} </math>(MP with [[一阶逻辑#量词公理|A4]], 20) (22)<math>(\forall a \in A)(\exists M)\{ (a \in M) \wedge [M \in \mathcal{M} \cap \mathcal{P}(A)] \} </math>([[一阶逻辑#等價代換|Equv]] with 17, 21) (23)<math>\left\{a \in \bigcup[\mathcal{M} \cap \mathcal{P}(A)]\right\} \Leftrightarrow (\exists M)\{ (a \in M) \wedge [M \in \mathcal{M} \cap \mathcal{P}(A)] \} </math>(MP with [[并集公理]], [[一阶逻辑#量词公理|A4]]) (24)<math>(\forall a)\left\{ (a \in A) \Rightarrow \left\{a \in \bigcup[\mathcal{M} \cap \mathcal{P}(A)]\right\} \right\} </math>([[一阶逻辑#等價代換|Equv]] with 22, 23) |} ==== 運算性質 ==== {{Math theorem | name = 定理(5) | math_statement = <br/> 若 :<math>\mathcal{M}_A := \left\{ B \,|\, (\exists M \in \mathcal{M})(B = M \cap A) \right\}</math> 則 :<math>\vdash \bigcup\mathcal{M}_A = A \cap \left(\bigcup\mathcal{M}\right)</math> }} {| class="mw-collapsible mw-collapsed wikitable" !'''證明''' |- |(1)<math>(\forall B)[ (B \in \mathcal{M}_A) \Leftrightarrow (\exists M \in \mathcal{M})(B = M \cap A) ]</math> (<math>\mathcal{M}_A </math>的定義) (2) <math>(\forall x)\left\{ \left(x \in \bigcup\mathcal{M}\right) \Leftrightarrow (\exists B \in \mathcal{M})(x \in B) \right\} </math>(MP with [[并集公理]], [[一阶逻辑#量词公理|A4]]) (3) <math>(\forall A)(\forall B)(\forall x)\left\{ (x \in A \cap B) \Leftrightarrow \left[ (x \in A) \wedge (x \in B) \right] \right\} </math>([[交集#有限交集|有限交集]]) (4)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow (\exists B)[ (B \in \mathcal{M}_A) \wedge (x \in B)]</math>(MP with [[一阶逻辑#量词公理|A4]], 2) (5) <math>(B \in \mathcal{M}_A) \Leftrightarrow (\exists M \in \mathcal{M})(B = M \cap A) </math>(MP with [[一阶逻辑#量词公理|A4]], 1) (6) <math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow (\exists B)[ (x \in B) \wedge (\exists M \in \mathcal{M})(B = M \cap A) ] </math>([[一阶逻辑#等價代換|Equv]] with 4, 5) (7)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow (\exists B)(\exists M)[ (x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A) ] </math>([[一阶逻辑#等價代換|Equv]] with [[一阶逻辑#量詞的簡寫|Ce]], 6) (8)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow (\exists M)(\exists B)[ (x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A) ] </math>([[一阶逻辑#等價代換|Equv]] with [[一阶逻辑#量詞的可交換性|量詞可交換性]] ,7) (9) <math>(B = M \cap A) \Rightarrow\{ [(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] \} </math>([[一阶逻辑#等式定理|E2]]) (10)<math>[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow (B = M \cap A) </math>([[一阶逻辑#且與或的直觀意義|AND]]) (11)<math>[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] </math><math>\Rightarrow\{ [(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] \} </math>([[一阶逻辑#演繹元定理|D1]] with 9,10) (12)<math>\{ [(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \} </math> <math>\Rightarrow\{ [(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] \} </math>(MP with [[一阶逻辑#邏輯公理|A2]], 11) (13)<math>[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] </math>([[一阶逻辑#定理與證明|I]]) (14)<math>[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] </math>(MP with 12, 13) (15)<math>[(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M})] </math>([[一阶逻辑#且與或的直觀意義|AND]]) (16)<math>[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M})] </math>([[一阶逻辑#演繹元定理|D1]] with 14,15) (17)<math>(\exists M)(\exists B)[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Rightarrow (\exists M)[(x \in M \cap A) \wedge ( M \in \mathcal{M})] </math>([[一阶逻辑#普遍化元定理|GENe]] with <math>B</math> then <math>M</math>) (18)<math>M \cap A = M \cap A </math> ([[一阶逻辑#等式定理|E1]]) 注意到配合([[一阶逻辑#且與或的直觀意義|AND]])和[[一阶逻辑#演繹元定理|演繹定理]]有 <math>\mathcal{P} \vdash \mathcal{R} \Rightarrow (\mathcal{R} \wedge \mathcal{P}) </math>(a) (19)<math>[(x \in M \cap A) \wedge ( M \in \mathcal{M})] \Rightarrow [(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] </math>(a with 18) (20)<math>(\forall B)\{\neg[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)]\} \Rightarrow \{\neg[(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)]\} </math>([[一阶逻辑#量词公理|A4]]) (21)<math>[(x \in M \cap A) \wedge ( M \in \mathcal{M}) \wedge (M \cap A = M \cap A)] \Rightarrow (\exists B)[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] </math>(MP with [[一阶逻辑#否定|T]], 20) (22)<math>[(x \in M \cap A) \wedge ( M \in \mathcal{M})] \Rightarrow (\exists B)[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] </math>([[一阶逻辑#演繹元定理|D1]] with 19, 21) (23)<math>(\exists M)[(x \in M \cap A) \wedge ( M \in \mathcal{M})] \Rightarrow (\exists M)(\exists B)[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] </math>([[一阶逻辑#普遍化元定理|GENe]] with <math>M</math>) (24)<math>(\exists M)(\exists B)[(x \in B) \wedge ( M \in \mathcal{M}) \wedge (B = M \cap A)] \Leftrightarrow (\exists M)[(x \in M \cap A) \wedge ( M \in \mathcal{M})] </math>([[一阶逻辑#且與或的直觀意義|AND]] with 17, 23) (25)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow (\exists M)[(x \in M \cap A) \wedge ( M \in \mathcal{M})] </math>([[一阶逻辑#等價代換|Equv]] with 8, 24) (26) <math>(x \in M \cap A) \Leftrightarrow [(x \in M) \wedge (x \in A)]</math>(MP with [[一阶逻辑#量词公理|A4]], 3) (27)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow (\exists M)[ (x \in M) \wedge (x \in A) \wedge (M \in \mathcal{M}) ] </math>([[一阶逻辑#等價代換|Equv]] with 25, 26) (28)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow \{ (\exists M)[ (x \in M) \wedge (M \in \mathcal{M}) ] \wedge (x \in A) \} </math>([[一阶逻辑#等價代換|Equv]] with [[一阶逻辑#量詞的簡寫|Ce]], 27) (30) <math>\left(x \in \bigcup\mathcal{M}\right) \Leftrightarrow (\exists M \in \mathcal{M})(x \in M) </math>(MP with [[一阶逻辑#量词公理|A4]], 2) (31)<math>\left(x \in \bigcup\mathcal{M}_A\right) \Leftrightarrow \left[ \left(x \in \bigcup\mathcal{M}\right) \wedge (x \in A) \right] </math>([[一阶逻辑#等價代換|Equv]] with 28, 30) (32)<math>\left[x \in A \cap \left(\bigcup\mathcal{M}\right) \right] \Leftrightarrow \left[ (x \in A) \wedge \left(x \in \bigcup\mathcal{M}\right) \right] </math>(MP with [[一阶逻辑#量词公理|A4]], 3) (33)<math>\left[x \in A \cap \left(\bigcup\mathcal{M}\right) \right] \Leftrightarrow \left(x \in \bigcup\mathcal{M}_A\right) </math>([[一阶逻辑#等價代換|Equv]] with 31, 32) (34)<math>(\forall x)\left\{ \left[x \in A \cap \left(\bigcup\mathcal{M}\right) \right] \Leftrightarrow \left(x \in \bigcup\mathcal{M}_A\right) \right\} </math>([[一阶逻辑#普遍化元定理|GEN]] with <math>x</math>, 33) |} 直觀上這個定理說,交集在「无限并集满足分配律」,一般會不正式的寫為 : <math>\bigcup_{i\in I}\left(A \cap B_{i}\right) = A \cap \bigcup_{i\in I} B_{i}</math> {{Math theorem | name = 定理(6) | math_statement = <br/> <math>\N \,\overset{A}{\cong}\, \mathcal{A} </math>,若對[[自然数]] <math>m \in \N </math> 做以下的符號定義: : <math>\mathcal{A}_m := \left\{ S \in \mathcal{A} \,|\, A^{-1}(S) \geq m \right\} </math> : <math>\mathcal{I} := \left\{ S \,\bigg|\, (\exists m \in \N)\left( S = \bigcap \mathcal{A}_m \right) \right\} </math> : <math>\mathcal{S} := \left\{ S \,\bigg|\, (\exists m \in \N)\left( S = \bigcup \mathcal{A}_m \right) \right\} </math> 那有 : <math>\vdash \bigcup \mathcal{I} \subseteq \bigcap \mathcal{S}</math>。 }} 這個定理一般會被不正式的寫為 : <math>\bigcup^{\infty}_{i=0}\left(\bigcap^{\infty}_{j=i} A_j \right) \subseteq \bigcap^{\infty}_{i=0}\left(\bigcup^{\infty}_{j=i} A_j \right)</math>。 == 参考 == * [[朴素集合论]] * [[交集]] * [[补集]] * [[对称差]] * [[不交并]] * [[布尔逻辑]] == 参考文献 == <references /> [[Category:抽象代数|B]] [[Category:集合論基本概念|B]] [[Category:二元運算|B]] {{集合论}}
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Math theorem
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:集合论
(
查看源代码
)
返回
并集
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息