查看“︁山邊問題”︁的源代码
←
山邊問題
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''山邊(Yamabe)問題'''是[[微分幾何]]的問題,得名自[[山邊英彥]]。雖然山邊英彥在1960年初宣稱得到解答,他的證明中一個關鍵錯誤在1968年被[[尼爾·特魯丁格]]發現,而山邊英彥已在1960年底逝世。後來陸續由[[尼爾·特魯丁格]]、[[蒂埃里·奧班]]、[[理查德·舍恩]]研究,山邊問題在1984年得到完全解決。 ==問題== 給出維數<math>n \ge 3</math>的[[光滑]][[緊緻]][[流形]]<math>M</math>及[[黎曼度量]]<math>g</math>,是否必然存在共形於<math>g</math>的度量<math>g'</math>,使得<math>g'</math>的[[數量曲率]]為常數?換言之,<math>M</math>上是否存在光滑函數<math>f</math>,使得 <math>g' = e^{2f}g</math>有[[常曲率|常數量曲率]]? 現已知道確有如此度量,證明使用了[[微分幾何]]、[[偏微分方程]]、[[泛函分析]]的技巧。 ==非緊緻情形== 推廣到非緊緻流形上的山邊問題是:在非緊緻的光滑[[完備]][[黎曼流形]]<math>(M,g)</math>,是否必然存在共形度量<math>g'</math>,使數量曲率為常數,且流形仍為完備?這問題的答案為否,Jin Zhiren發現其反例。 == 參考 == *{{citation|first1=J.|last1=Lee|first2=T.|last2=Parker|url=http://www.ams.org/bull/1987-17-01/S0273-0979-1987-15514-5/|title=The Yamabe problem|journal=Bulletin of the American Mathematical Society|volume=17|pages=37–81|year=1987}}. *{{Citation | last1=Trudinger | first1=Neil S. | author1-link=Neil Trudinger | title=Remarks concerning the conformal deformation of Riemannian structures on compact manifolds | url=http://www.numdam.org/item?id=ASNSP_1968_3_22_2_265_0 | mr=0240748 | year=1968 | journal=Ann. Scuola Norm. Sup. Pisa (3) | volume=22 | pages=265–274 | accessdate=2013-09-01 | archive-date=2012-10-27 | archive-url=https://web.archive.org/web/20121027162007/http://www.numdam.org/item?id=ASNSP_1968_3_22_2_265_0 | dead-url=no }} *{{Citation | last1=Yamabe | first1=Hidehiko | title=On a deformation of Riemannian structures on compact manifolds | url=http://projecteuclid.org/euclid.ojm/1200689814 | mr=0125546 | year=1960 | journal=Osaka Journal of Mathematics | issn=0030-6126 | volume=12 | pages=21–37 | accessdate=2013-09-01 | archive-date=2016-02-03 | archive-url=https://web.archive.org/web/20160203070431/http://projecteuclid.org/euclid.ojm/1200689814 | dead-url=no }} *{{Citation | last1=Jin | first1=Zhiren | title=Partial differential equations (Tianjin, 1986) | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Math. | doi=10.1007/BFb0082927 | mr=1032773 | year=1988 | volume=1306 | chapter=A counterexample to the Yamabe problem for complete noncompact manifolds | pages=93–101}} *{{cite journal |author=鄭日新 |title=Rick Schoen, Yamabe 問題與正質量定理 |journal=數學傳播 |volume=24 |issue=4 |pages=63-67 |id= |url=http://w3.math.sinica.edu.tw/math_media/d244/24408.pdf |date=2000年12月 |access-date=2013-09-01 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304113955/http://w3.math.sinica.edu.tw/math_media/d244/24408.pdf |dead-url=no }} [[Category:微分幾何]] [[Category:数学问题]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
返回
山邊問題
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息