查看“︁对数微分法”︁的源代码
←
对数微分法
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{微积分学}} '''对数微分法'''({{lang-en|Logarithmic differentiation}})是在[[微积分学]]中,通过求某[[函数]]''f''的{{link-en|对数导数|Logarithmic derivative}}来求得函数[[导数]]的一种方法, <ref>{{cite book|title=Calculus demystified|url=https://archive.org/details/calculusdemystif0000kran|pages=[https://archive.org/details/calculusdemystif0000kran/page/170 170]|first=Steven G.|last=Krantz|publisher=McGraw-Hill Professional|year=2003|isbn=0-07-139308-0}}</ref> :<math>[\ln(f)]' = \frac{f'}{f} \quad \rightarrow \quad f' = f \cdot [\ln(f)]'.</math> 这一方法常在函数对数求导比对函数本身求导更容易时使用,这样的函数通常是几项的积,取对数之后,可以把函数变成容易求导的几项的和。这一方法对幂函数形式的函数也很有用。对数微分法依赖于[[链式法则]]和[[对数]]的性质(尤其是[[自然对数]]),把积变为求和,把商变为做差<ref>{{cite book|title=Golden Differential Calculus|pages=282|author=N.P. Bali|publisher=Firewall Media|year=2005|isbn=81-7008-152-1}}</ref><ref name="Bird">{{cite book|title=Higher Engineering Mathematics|url=https://archive.org/details/higherengineerin00bscj_519|first=John|last=Bird|pages=[https://archive.org/details/higherengineerin00bscj_519/page/n342 324]|publisher=Newnes|year=2006|isbn=0-7506-8152-7}}</ref>。这一方法可以应用于所有恆不为0的[[可微函数]]。 ==概述 == 对于某函数 :<math>y=f(x)\,\!</math> 运用对数微分法,通常对函数两边取绝对值后取自然对数<ref>{{cite book|title=Schaum's Outline of Theory and Problems of Calculus for Business, Economics, and the Social Sciences|url=https://archive.org/details/schaumsoutlineof0000dowl|first=Edward T.|last=Dowling|publisher=McGraw-Hill Professional|year=1990|isbn=0-07-017673-6|pages=[https://archive.org/details/schaumsoutlineof0000dowl/page/160 160]}}</ref>。 :<math>\ln|y| = \ln|f(x)|\,\!</math> 运用[[隐函数#隐函数的导数|隐式微分法]]<ref name="One">{{cite book|title=Calculus of One Variable|first=Keith|last=Hirst|pages=97|publisher=Birkhäuser|year=2006|isbn=1-85233-940-3}}</ref>,可得 :<math>\frac{1}{y} \frac{dy}{dx} = \frac{f'(x)}{f(x)}</math> 两边同乘以''y'',则方程左边只剩下''dy''/''dx'': :<math>\frac{dy}{dx} = y \times \frac{f'(x)}{f(x)} = f'(x).</math> 对数微分法有用,是因为对数的性质可以大大简化复杂函数的微分<ref>{{cite book|title=Calculus, single variable|url=https://archive.org/details/calculussingleva0000blan|first=Brian E.|last=Blank|pages=[https://archive.org/details/calculussingleva0000blan/page/457 457]|publisher=Springer|year=2006|isbn=1-931914-59-1}}</ref>,常用的对数性质有:<ref name="Bird" /> : <math>\ln(ab) = \ln(a) + \ln(b), \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \qquad \ln(a^n) = n\ln(a)</math> ===通用公式=== 有一如下形式的函数, :<math>f(x)=\prod_i(f_i(x))^{\alpha_i(x)}.</math> 两边取自然对数,得 :<math>\ln (f(x))=\sum_i\alpha_i(x)\cdot \ln(f_i(x)),</math> 两边对''x''求导,得 :<math>\frac{f'(x)}{f(x)}=\sum_i\left[\alpha_i'(x)\cdot \ln(f_i(x))+\alpha_i(x)\cdot \frac{f_i'(x)}{f_i(x)}\right].</math> 两边同乘以<math>f(x)</math>,可得原函数的导数为 :<math>f'(x)=\overbrace{\prod_i(f_i(x))^{\alpha_i(x)}}^{f(x)}\times\overbrace{\sum_i\left\{\alpha_i'(x)\cdot \ln(f_i(x))+\alpha_i(x)\cdot \frac{f_i'(x)}{f_i(x)}\right\}}^{[\ln (f(x))]'}</math> ==应用== ===积函数=== 对如下形式的两个函数的积函数 :<math>f(x)=g(x)h(x)\,\!</math> 两边取自然对数,可得如下形式的和函数 :<math>\ln(f(x))=\ln(g(x)h(x))=\ln(g(x))+\ln(h(x))\,\!</math> 应用链式法则,两边微分,得 :<math>\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)}+\frac{h'(x)}{h(x)}</math> 整理,可得<ref>{{cite book|title=An Elementary Treatise on the Differential Calculus|first=Benjamin|last=Williamson|publisher=BiblioBazaar, LLC|year=2008|pages=25–26|isbn=0-559-47577-2}}</ref> :<math>f'(x) = f(x)\times \Bigg\{\frac{g'(x)}{g(x)}+\frac{h'(x)}{h(x)}\Bigg\}= g(x)h(x)\times \Bigg\{\frac{g'(x)}{g(x)}+\frac{h'(x)}{h(x)}\Bigg\}</math> ===商函数=== 对如下形式的两个函数的商函数 :<math>f(x)=\frac{g(x)}{h(x)}\,\!</math> 两边取自然对数,可得如下形式的差函数 :<math>\ln(f(x))=\ln\Bigg(\frac{g(x)}{h(x)}\Bigg)=\ln(g(x))-\ln(h(x))\,\!</math> 应用链式法则,两边求导,得 :<math>\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)}-\frac{h'(x)}{h(x)}</math> 整理,可得 :<math>f'(x) = f(x)\times \Bigg\{\frac{g'(x)}{g(x)}-\frac{h'(x)}{h(x)}\Bigg\}= \frac{g(x)}{h(x)}\times \Bigg\{\frac{g'(x)}{g(x)}-\frac{h'(x)}{h(x)}\Bigg\}</math> 右边通分之后,结果和对<math>f(x)</math>运用[[除法定则]]所得结果相同。 ===复合指数函数=== 对于如下形式的函数 :<math>f(x)=g(x)^{h(x)}\,\!</math> 两边取自然对数,可得如下形式的积函数 :<math>\ln(f(x))=\ln\left(g(x)^{h(x)}\right)=h(x) \ln(g(x))\,\!</math> 应用链式法则,两边求导,得 :<math>\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x)\frac{g'(x)}{g(x)}</math> 整理,得 :<math>f'(x) = f(x)\times \Bigg\{h'(x) \ln(g(x)) + h(x)\frac{g'(x)}{g(x)}\Bigg\}= g(x)^{h(x)}\times \Bigg\{h'(x) \ln(g(x)) + h(x)\frac{g'(x)}{g(x)}\Bigg\}.</math> 与将函数''f''看做[[指数函数]],直接运用链式法则所得结果相同。 ==参见== {{Portal|数学}} * [[对数恒等式]] ==参考文献== {{reflist|2}} ==外部链接== *{{cite web|url=http://v.163.com/movie/2006/8/S/A/M6GLI5A07_M6GLO3OSA.html|title=网易公开课:对数微分法|publisher=网易|accessdate=2014-11-26|archive-date=2020-01-07|archive-url=https://web.archive.org/web/20200107215232/http://v.163.com/movie/2006/8/S/A/M6GLI5A07_M6GLO3OSA.html|dead-url=no}} *{{cite web|url=https://www.youtube.com/playlist?list=PL89B4CC8694E23F00|title=对数之微分法(高中文理科)|publisher=Youtube|accessdate=2014-11-26|archive-date=2016-03-14|archive-url=https://web.archive.org/web/20160314173610/https://www.youtube.com/playlist?list=PL89B4CC8694E23F00|dead-url=no}} *{{cite web|url=http://www.mathcentre.ac.uk/students/topics/differentiation/by-logs/|title=Differentiation by taking logarithms – Teach yourself|publisher=mathcentre.ac.uk|accessdate=2012-01-03|archive-date=2020-10-26|archive-url=https://web.archive.org/web/20201026002148/https://mathcentre.ac.uk/students/topics/differentiation/by-logs/|dead-url=no}} *{{cite web|url=http://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/logdiffdirectory/LogDiff.html|title=Logarithmic differentiation|accessdate=2009-03-10|archive-date=2020-11-27|archive-url=https://web.archive.org/web/20201127194305/https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/logdiffdirectory/LogDiff.html|dead-url=no}} *{{cite web|url=http://tutorial.math.lamar.edu/Classes/CalcI/LogDiff.aspx|title=Calculus I – Logarithmic differentiation|accessdate=2009-03-10|archive-date=2021-01-03|archive-url=https://web.archive.org/web/20210103102757/https://tutorial.math.lamar.edu/Classes/CalcI/LogDiff.aspx|dead-url=no}} [[Category:微分学]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Portal
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:微积分学
(
查看源代码
)
返回
对数微分法
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息