查看“︁双重sinh-Gordon方程”︁的源代码
←
双重sinh-Gordon方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''双重sinh-Gordon方程'''(Double sinh-Gordon equation)是一个[[非线性偏微分方程]]。<ref>Andrei D. Polyanin, Valentin F. Zaitsev, HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS SECOND EDITION CRC Press, A Chapman & Hall Book ISBN 9781420087239</ref><ref>Zeitschrift Für Naturforschung: A journal of physical sciences 2004 p933-937 </ref><ref>A. M. WAZWAZ Exact solutions to the double sinh-gordon equation by the tanh method and a variable separated ODE method,Computers & Mathematics with Applications,Volume 50, Issues 10–12, November–December 2005, Pages 1685–1696</ref><ref>Issues in Logic, Operations, and Computational Mathematics and Geometry 2013 p484</ref><ref>Mathematical Reviews - Page 3708 2007</ref>. <math>u_{xt}=asinh(u)+bsinh(2u)</math> ==行波解== * <math> {v = _C5*JacobiCN(_C2+_C3*x-(a*_C5^2-2*b*_C5^2-2*b-a)*t/(_C3*(_C5^2-1)), \sqrt((-2*a*_C5^2+a*_C5^4+a+2*b-2*b*_C5^4)*(a*_C5^2-2*b*_C5^2-a))*_C5/(-2*a*_C5^2+a*_C5^4+a+2*b-2*b*_C5^4))} </math> * <math>{v = _C5*JacobiDN(_C2+_C3*x-_C5^2*(a*_C5^2-2*b*_C5^2-a)*t/(_C3*(-2*_C5^2+1+_C5^4)), \sqrt((-2*a*_C5^2+a*_C5^4+a+2*b-2*b*_C5^4)*(a*_C5^2-2*b*_C5^2-a))/((a*_C5^2-2*b*_C5^2-a)*_C5))} </math> * <math> {v = _C5*JacobiNC(_C2+_C3*x+(a*_C5^2-2*b*_C5^2-2*b-a)*t/(_C3*(_C5^2-1)), \sqrt(-(-2*a*_C5^2+a*_C5^4+a+2*b-2*b*_C5^4)*(a*_C5^2-2*b-a))/(-2*a*_C5^2+a*_C5^4+a+2*b-2*b*_C5^4))} </math> * <math> {v = _C5*JacobiND(_C2+_C3*x-(a*_C5^2-2*b-a)*t/(_C3*(-2*_C5^2+1+_C5^4)), \sqrt(-(-2*a*_C5^2+a*_C5^4+a+2*b-2*b*_C5^4)*(a*_C5^2-2*b-a))/(a*_C5^2-2*b-a))} </math> * <math>{v = \sqrt(a*(2*b+a))*csc(_C1+_C2*x-(2*b+a)*t/_C2)/a} </math> * <math> {v = \sqrt(a*(2*b+a))*csc(_C2+_C3*x-(2*b+a)*t/_C3)/a} </math> * <math> {v = \sqrt(a*(2*b+a))*sec(_C1+_C2*x-(2*b+a)*t/_C2)/a} </math> * <math> {v = \sqrt(a*(2*b+a))*sech(_C1+_C2*x+(2*b+a)*t/_C2)/a} </math> * <math> {v = \sqrt(-a*(2*b+a))*csch(_C1+_C2*x+(2*b+a)*t/_C2)/a} </math> * <math> {v = \sqrt((a-2*b)*a)*cosh(_C2+_C3*x-(a-2*b)*t/_C3)/(a-2*b)} </math> * <math> {v = \sqrt((a-2*b)*(2*b+a))*tanh(_C1+_C2*x+(1/8)*(a^2-4*b^2)*t/(_C2*b))/(a-2*b)} </math> 其中 <math>v = tanh((1/2)*u)</math> ==特解== *<math> u(x,t)= 2arctanh(1.5*JacobiCN(1.2+1.3*x+3.2307692307692307692*t, 1.0555973258234951998)) </math> *<math>u(x,t)= 2arctanh(1.5*JacobiDN(1.2+1.3*x+3.6000000000000000000*t, .94733093343134184593)) </math> *<math>u(x,t)= 2*arctanh(1.5*JacobiNC(-1.2-1.3*x+3.2307692307692307692*t, .33806170189140663100*I)) </math> *<math>u(x,t)=2*arctanh(1.5*JacobiND(1.2+1.3*x+.36923076923076923077*t, 2.9580398915498080213*I)) </math> *<math> u(x,t)=-2*arctanh(\sqrt(3)*csc(15.1-1.2*x+2.5000000000000000000*t)) </math> *<math> u(x,t)=-2*arctanh(\sqrt(3)*csc(-1.2-1.3*x+2.3076923076923076923*t)) </math> *<math> u(x,t)=2*arctanh(\sqrt(3)*sec(15.1-1.2*x+2.5000000000000000000*t)) </math> *<math> u(x,t)= 2*arctanh(\sqrt(3)*sech(-15.1+1.2*x+2.5000000000000000000*t)) </math> *<math> u(x,t)= 2*arctanh(\sqrt(3)*sech(1.2+1.3*x+2.3076923076923076923*t)) </math> *<math> u(x,t)= 2*arctanh(\sqrt(-3)*csch(-15.1+1.2*x+2.5000000000000000000*t)) </math> *<math> </math> *<math> </math> *<math> </math> ==行波图== {| |[[File:DSHG 1.gif]] |[[File:DSHG 2.gif]] |} {| |[[File:DSHG 3.gif]] |[[File:DSHG 4.gif]] |} {| |[[File:DSHG 5.gif]] |[[File:DSHG 6.gif]] |} {| |[[File:DSHG 7.gif]] |[[File:DSHG 8.gif]] |} ==参考文献== <references/> [[Category:非线性偏微分方程]]
返回
双重sinh-Gordon方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息