查看“︁卡西米爾不變量”︁的源代码
←
卡西米爾不變量
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[數學]]裏,'''卡西米爾不變量'''(又稱'''卡西米爾元'''或'''卡希米爾算子''')是[[李代數]]的[[泛包絡代數]][[中心 (群论)|中心]]的一個特別的元素。典型的例子是[[角動量算符]]的平方 ''J'' <sup>2</sup>, 一個三維[[旋轉群]]的卡西米爾不變量。 卡西米爾元以[[亨德里克·卡西米爾]]命名。1931年,他確立了這個概念,以用在他對[[刚体动力学]]的描述當中。<ref>{{Cite book | publisher = Springer | isbn = 978-0-387-40307-6 | last = Oliver | first = David | title = The shaggy steed of physics: mathematical beauty in the physical world | url = https://archive.org/details/shaggysteedphysi00oliv_967 | year = 2004 | page = [https://archive.org/details/shaggysteedphysi00oliv_967/page/n99 81] }}</ref> ==定義== 最常用的卡西米爾元是二次的。其最易定義,因此先在下文給出。然而,也有更高次的卡西米爾不變量,其對應高次的對稱齊次多項式,這些不變量在最後定義。 ===二次卡西米爾元=== 設 <math>\mathfrak{g}</math> 為一個 <math>n</math> 維[[半單李代數]]。設 ''B'' 為 <math>\mathfrak{g}</math> 上非奇異的[[二次型]],並要求 ''B'' 在 <math>\mathfrak{g}</math> 的[[伴随表示|伴隨作用]]下不變,即對 <math>\mathfrak{g}</math> 中的任意 ''X,Y,Z,'' 都有 <math>B(ad_XY,Z)+B(Y,ad_XZ)=0.</math> (例如,可取 ''B'' 為[[基灵型]]。) 設 :<math>\{X_i\}_{i=1}^n</math> 為 <math>\mathfrak{g}</math> 的[[基 (線性代數)|基]],以及 :<math>\{X^i\}_{i=1}^n</math> 為 <math>\mathfrak{g}</math> 關於 ''B'' 的對偶基,則 ''B'' 的'''卡西米爾不變量''' <math>\Omega</math> 是泛包絡代數 <math>U(\mathfrak{g})</math> 的元素 :<math>\Omega = \sum_{i=1}^n X_i X^i.</math> 儘管上述定義取決於選取的基,可以證明所得的 ''Ω'' 與所選的基無關。另一方面,不同的二次型 ''B'' 可以給出不同的 ''Ω''. ''B'' 的不變性,說明卡西米爾元與李代數 <math>\mathfrak{g}</math> 的任何元素都可交換,因此是泛包絡代數 <math>U(\mathfrak{g})</math> 的中心的元素。<ref>{{harvnb|Hall|2015}} Proposition 10.5</ref> ===線性表示和光滑作用的卡西米爾元=== 給定 <math>\mathfrak{g}</math> 在向量空間 ''V'' 上的{{link-en|李代數表示|Lie algebra representation}} ''ρ'' (允許無窮維),將 ρ(Ω) 稱為 ''ρ'' 的卡西米爾不變量,其為 V 上的線性算子,且由下式給出: :<math>\rho(\Omega) = \sum_{i=1}^n \rho(X_i)\rho(X^i).</math> 此處假定了 ''B'' 為基靈型,否則必須指明 ''B''. 該構造的特定形式,在[[微分幾何]]和{{link-en|大域分析|Global Analysis}}中有重要作用。假設連通李群 ''G'' 的李代數 <math>\mathfrak{g}</math> 作用在微分流形 ''M'' 上,則在 ''M'' 的連續函數空間上,有 ''G'' 相應的表示 ''ρ''. <math>\mathfrak{g}</math> 的元素均由 ''M'' 上的一階微分算子表示,於是,上式給出 ''ρ'' 的卡西米爾元,其為 ''M'' 上的二階微分算子,且在 ''G'' 的作用下不變。 更進一步,若 ''M'' 有[[度量张量]],使得 ''G'' 的元素作為 ''M'' 的保距變換,可遞地作用在 ''M'' 上,且一點的穩定子 ''G''<sub>x</sub> 不可約地作用在切空間 ''T<sub>x</sub>M'' 上,則 ''ρ'' 的卡西米爾元是該度量的[[拉普拉斯算子]]的倍數。 也可定義更一般的卡西米爾不變量,其於{{link-en|弗雷德霍姆理論|Fredholm theory}}研究[[伪微分算子]]時用到。 ===一般情況=== <!-- {{link-en|universal enveloping algebra}}有詳細準確定義卡西米爾元,並有闡述若干性質,是擴展本段的可行方向 --> 每個卡西米爾算子,都對應[[伴隨表示]]的{{link-en|對稱代數|Symmetric algebra}} <math>\mbox{ad}_\mathfrak{g}.</math> 的對稱[[齊次多項式]]。換言之,任何一個卡西米爾算子都具有下列形式: :<math>C_{(m)} = \kappa^{ij\cdots k} X_i \otimes X_j \otimes \cdots\otimes X_k,</math> 其中 {{math|''m''}} 是對稱張量 <math>\kappa^{ij\cdots k}</math> 的階,且 <math>X_i</math> 組成 <math>\mathfrak{g}</math> 的[[基 (線性代數)|基]]。域 {{math|''K''}}上的[[多项式环]] <math>K[t_i, t_j, \cdots ,t_k]</math> 內,有 {{math|''m''}} 元對稱齊次多項式 :<math>c_{(m)} = \kappa^{ij\cdots k} t_i t_j \cdots t_k</math> 與該卡西米爾算子對應。{{link-en|龐卡萊–伯克霍夫–維特定理|Poincaré–Birkhoff–Witt theorem}}給出了泛包絡代數的顯式構造,由此可以證明上述的對應關係。 然而,''並非''每個對應張量(或對稱齊次多項式)都與一個卡西米爾算子對應。其必須與李括號顯見地可交換,即對每個基向量 <math>X_i</math>, 都滿足 :<math>[C_{(m)}, X_i] = 0</math>. 考慮[[结构常数]] ''f<sub>ij</sub><sup>k</sup>'',其滿足 :<math>[X_i,X_j]=f_{ij}^{\;\; k}X_k.</math> 於是對於滿足上述條件的對稱多項式,可得 :<math>f_{ij}^{\;\; k} \kappa^{jl\cdots m} + f_{ij}^{\;\; l} \kappa^{kj\cdots m} + \cdots + f_{ij}^{\;\; m} \kappa^{kl\cdots j} = 0. </math> 此為[[伊斯拉埃爾·蓋爾范德]]所得的結果。<ref>Xavier Bekaert, "[http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/ModaveI/Xavier.pdf Universal enveloping algebras and some applications in physics] {{Wayback|url=http://www.ulb.ac.be/sciences/ptm/pmif/Rencontres/ModaveI/Xavier.pdf |date=20170808073818 }}" (2005) ''Lecture, Modave Summer School in Mathematical Physics''.</ref> 由該交換關係,可知卡西米爾元與李代數中的任意元素都可交換,從而卡西米爾元是在泛包絡代數的中心裏內。得益於此,{{link-en|李代數表示|Lie algebra representation}}能以其卡西米爾元的特徵值來分類。 注意上述對稱多項式的線性和仍然是在中心裏。更甚者,諸卡西米爾元組成中心的一組基。若一個[[半單李代數]]的秩為 {{math|''r'',}} 即其[[嘉当子代数]]的維數為 {{math|''r'',}} 則其恰有 {{math|''r''}} 個卡西米爾元。 ==性質== ===唯一性=== 一個單李代數中,每個不變二次型皆為[[基灵型]]的倍數,所以對應的卡西米爾元唯一(允許相差一個常數的意義下)。對於一般的半單李代數,考慮其不變二次型組成的空間。半單李代數是若干單李代數的直和,因此該二次型空間中,對應每個單分量,恰有一個基向量。故卡西米爾元組成的空間中,也對應每個單分量,恰有一個基向量。 ===與 G 上拉普拉斯算子的關係=== 若 <math>G</math> 為李群,且其李代數為 <math>\mathfrak{g}</math>, 則 <math>\mathfrak{g}</math> 上的不變二次型對應 <math>G</math> 上的雙不變[[度量张量|黎曼度量]]。並且, <math>\mathfrak{g}</math> 的[[泛包絡代數]]等同於 <math>G</math> 上的左不變微分算子空間。在此等同關係下,<math>\mathfrak{g}</math> 上雙線性型的卡西米爾元,對應 <math>G</math> 關於雙不變度量的[[拉普拉斯-贝尔特拉米算子]]。 ===推廣=== 卡西米爾算子是李代數的[[泛包絡代數]]的[[中心 (代数)|中心]]的特殊二次元素。換言之,卡西米爾算子是一個微分算子,其與李代數的生成元皆可交換。泛包絡代數中心裏,每個二次元素均是某個二次型的卡西米爾元。然而,中心內可以有其他(非二次)的元素。 由[[朱利奥·拉卡|拉卡]]定理<ref>{{cite book|last1=Racah|first1=Giulio|title=Group theory and spectroscopy|date=1965|publisher=Springer Berlin Heidelberg}}</ref>,[[半單李代數]]的泛包絡代數中心的維數,等於該李代數的秩。在任意的半單李群(即其李代數為半單李代數)上,可以利用卡西米爾元,定義群上的[[拉普拉斯算子]]。然而,按照上述關於秩的結論,當秩大於 1 時,無法類比地定義唯一的拉普拉斯算子。 根據定義,泛包絡代數的中心內,任何元素都與整個代數的元素可交換。由[[舒尔引理]],任何{{link-en|既約表示|Irreducible representation}}中,卡西米爾算子必為恆等映射的倍數。該比例常數適用於李代數表示的分類(也就適用於李群表示的分類)。物理上,質量和自旋均屬該種常數,並且[[量子力学]]中許多[[量子数]]亦然。 ==例:<math>\mathfrak{so}(3)</math>== 考慮三維[[欧几里得空间]]的[[旋轉群]] SO(3). 其李代數 <math>\mathfrak{so}(3)</math> 的秩為 1, 因此僅得一個獨立的卡西米爾元。旋轉群的基靈型為[[克罗内克δ函数|克羅內克δ]], 故相應的卡西米爾不變量正是李代數的生成元 <math>L_x,\, L_y,\, L_z</math> 的平方和。換言之,卡西米爾元由等式 :<math>L^2=L_x^2+L_y^2+L_z^2</math> 給出。 考慮 <math>\mathfrak{so}(3)</math> 的一個不可約表示。記其中 <math>L_z</math> 的最大特徵值為 <math>\ell</math>, 則 <math>\ell</math> 的可能取值為 <math>0,1/2,1,3/2,\ldots.</math> 卡西米爾元的不變性可推出其為恆等算子 ''I'' 的倍數。該常數可以具體計算出,即:<ref> {{harvnb|Hall|2013}} Proposition 17.8</ref> :<math>L^2=L_x^2+L_y^2+L_z^2=\ell(\ell+1)I.</math> 在[[量子力学]]中,常數 <math>\ell</math> 稱為[[總角動量量子數]]。對於旋轉群的有限維矩陣取值[[群表示論|表示]],<math>\ell</math> 總為整數或半整數(奇數的一半)。倘為整數,則該表示稱為[[玻色子]]表示({{lang-en|bosonic representation}}),否則稱為[[费米子]]表示({{lang-en|fermionic representation}})。 給定 <math>\ell</math>, 得到的矩陣表示是 <math>(2\ell+1)</math> 維的。例如 <math>\mathfrak{so}(3)</math> 的三維表示對應於 <math>\ell\,=\,1</math>, 由下列的生成元給出: :<math> L_x= i\begin{pmatrix} 0& 0& 0\\ 0& 0& -1\\ 0& 1& 0 \end{pmatrix};\quad L_y= i\begin{pmatrix} 0& 0& 1\\ 0& 0& 0\\ -1& 0& 0 \end{pmatrix};\quad L_z= i\begin{pmatrix} 0& -1& 0\\ 1& 0& 0\\ 0& 0& 0 \end{pmatrix}, </math> 其中照物理學常用的約定加入了 <math>i</math> 因子,使得諸生成元皆為[[自伴算子]]。 由此,可以手算二次卡西米爾元,結果為 :<math>L^2=L_x^2+L_y^2+L_z^2= 2 \begin{pmatrix} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{pmatrix}.</math> 當 <math>\ell\,=\,1</math>時,<math>\ell(\ell+1)\,=\,2</math>, 故此例子與前段的一般結果一致。類似地,二維的表示以[[泡利矩陣]]作基,對應物理上[[自旋]]為 1/2 的粒子。 ==特徵值== 由於卡西米爾元 <math>\Omega</math> 在泛包絡代數的中心內,其在一個單模(該代數的直和分解的一個分量)上的作用是乘上一個常數。設 <math>\langle,\rangle</math> 為 <math>\Omega</math> 定義採用的對稱非退化二次型。記 <math>L(\lambda)</math> 為具有最高權 <math>\lambda</math> 的元素組成的有限維模(稱為該表示的最高權模)。則卡西米爾元 <math>\Omega</math> 在 <math>L(\lambda)</math> 的作用為乘常數 :<math>\langle \lambda, \lambda + 2 \rho \rangle=\langle\lambda+\rho,\lambda+\rho\rangle - \langle\rho,\rho\rangle ,</math> 其中 <math>\rho</math> 為所有[[根系 (数学)#正根與單根|正根]]之和之半。<ref>{{harvnb|Hall|2015}} Proposition 10.6</ref> 若 <math>L(\lambda)</math> 非平凡(即 <math>\lambda\neq 0</math>), 則上述常數非零。原因是,由於 <math>\lambda</math> 是優控的({{lang-en|dominant}}, 即與任意正根的內積皆非負),若 <math>\lambda\neq 0</math>,則 <math>\langle\lambda,\lambda\rangle>0</math>, 且 <math>\langle\lambda,\rho\rangle\geq 0</math>, 故 <math>\langle\lambda,\lambda+2\rho\rangle >0</math>. 此結果適用於{{link-en|魏爾完全可約性定理|Weyl's theorem on complete reducibility}}的證明。亦可不使用上述公式,而採用更抽象的{{link-en|嘉當判別法|Cartan's criterion}}證明該常數非零。<ref>{{harvnb|Humphreys|1978}} Sections 4.3 and 6.2</ref> ==參見== *{{link-en|哈里希·錢德拉同構|Harish-Chandra isomorphism}} *{{link-en|包立-魯班斯基偽向量|Pauli–Lubanski pseudovector}} ==參考文獻== {{reflist}} *{{Citation| last=Hall|first=Brian C.|title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267|publisher=Springer|year=2013}} *{{Citation| last=Hall|first=Brian C.|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666}} * {{Citation| last=Humphreys | first=James E. | title=Introduction to Lie Algebras and Representation Theory | edition=Second printing, revised | series=Graduate Texts in Mathematics | volume=9 | publisher=Springer-Verlag | location=New York | year=1978 | isbn=0-387-90053-5 | url=https://archive.org/details/introductiontoli00jame }} ==延伸閱讀== * {{cite book | last=Jacobson | first=Nathan | title=Lie algebras | url=https://archive.org/details/liealgebras00jaco_525 | publisher=Dover Publications | year=1979 | isbn=0-486-63832-4 | pages=[https://archive.org/details/liealgebras00jaco_525/page/n254 243]–249 }} [[Category:李群表示论]] [[Category:李代数]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Harvnb
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Math
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
卡西米爾不變量
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息