查看“︁传播子”︁的源代码
←
传播子
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[量子力學]]以及[[量子场论]]中的'''传播子'''(propagator;'''核子,kernel'''),是描述[[粒子]]在特定時間由一處移動到另一處的[[機率幅]],或是粒子以特定能量及動量移動的[[機率幅]]。传播子也是场的[[运动方程]]的[[格林函数]]。物理学家使用核子计算[[费曼图]]以及[[散射]]过程的概率。 == 量子力学 == 自由粒子([[波包]])的核子是<ref>[http://planetmath.org/encyclopedia/SaddlePointApproximation.html Saddle point approximation] {{Wayback|url=http://planetmath.org/encyclopedia/SaddlePointApproximation.html |date=20150918183231 }}, planetmath.org</ref> {{Equation box 1|border|indent=:|equation=<math>K(x,x';t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}dk\,e^{ik(x-x')} e^{-i\hbar k^2 t/(2m)}=\left(\frac{m}{2\pi i\hbar t}\right)^{1/2}e^{-m(x-x')^2/(2i\hbar t)} ~.</math>|cellpadding=6|border colour=#0073CF|bgcolor=#F9FFF7}} [[量子諧振子]]的{{Internal link helper/en|Mehler核子|Mehler kernel}}<ref>{{Cite web|title=IMMERSION OF THE FOURIER TRANSFORM IN A CONTINUOUS GROUP OF FUNCTIONAL TRANSFORMATIONS|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076889/pdf/pnas01779-0028.pdf|accessdate=|author=|date=|format=|publisher=|language=|archive-date=2020-05-10|archive-url=https://web.archive.org/web/20200510085417/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076889/pdf/pnas01779-0028.pdf|dead-url=no}}</ref><ref>{{Cite book|title=E. U. Condon, "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Natl. Acad. Sci. USA 23, (1937) 158–164.|last=|first=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076889/pdf/pnas01779-0028.pdf|publisher=|year=|isbn=|location=|pages=}}</ref><ref>{{Cite book|edition=Dover edition|chapter=Pauli lectures on physics|url=https://www.worldcat.org/oclc/44493172|location=Mineola, New York|isbn=0-486-41457-4|oclc=44493172|last=Pauli, Wolfgang, 1900-1958.}}</ref> {{Equation box 1|border|indent=:|equation=<math>K(x,x';t)=\left(\frac{m\omega}{2\pi i\hbar \sin \omega t}\right)^{1/2}\exp\left(-\frac{m\omega((x^2+x'^2)\cos\omega t-2xx')}{2i\hbar \sin\omega t}\right) ~.</math>|cellpadding=6|border colour=#0073CF|bgcolor=#F9FFF7}} 通过[[泛函积分]],核子等于 <math>K(x, x'; t, t') = \int Dx(t) \ \exp(i\int_{t}^{t'}L(x, \dot{x}; t) \ dt)</math> <math>x(t) = x, \ x(t') = x'</math> L是[[拉氏量]]。 == 量子场论 == === [[Klein-Gordon方程|克莱因-戈尔登方程]] === 克戈场论(Klein-Gordon)的Feynman传播子 <math>\tilde{G}_F(p) = \frac{1}{p^2 - m^2 + i\epsilon}. </math> 据黄教授说,这是<ref>{{Cite book|chapter=Quantum field theory : from operators to path integrals|url=https://www.worldcat.org/oclc/38495059|publisher=Wiley|date=1998|location=New York|isbn=0-471-14120-8|oclc=38495059|last=Huang, Kerson, 1928-}}</ref> <math> G_\mathrm{F}(x,y) = \lim_{\epsilon \to 0} \frac{1}{(2 \pi)^4} \int d^4p \, \frac{e^{-ip(x-y)}}{p^2 - m^2 + i\epsilon} = \begin{cases} - \dfrac{1}{4 \pi} \delta(s) + \dfrac{m}{8 \pi \sqrt{s}} H_1^{(1)}(m \sqrt{s}) & \text{ if } s \geq 0 \\ - \dfrac{i m}{ 4 \pi^2 \sqrt{-s}} K_1(m \sqrt{-s}) & \text{if} s < 0. \end{cases} </math> H是[[汉克尔函数]],K是[[贝塞尔函数]],δ是[[狄拉克δ函数]],<math>s^2 = x^{\mu} x_{\mu}</math>。 Feynman传播子使用下面的[[曲线积分]](contour integral,[[留数定理]]) [[Image:FeynmanPropagatorPath.svg]] Feynman传播子也等于下面的[[真空期望值]]: <math>G_F(x-y) = -i\langle 0|T\phi(x)\phi(y)| 0 \rangle</math> <math>= -i\langle 0|\theta(x^0-y^0)\phi(x)\phi(y) + \theta(y^0-x^0)\phi(y)\phi(x)| 0 \rangle</math> 上面T是[[路径排序]]算子,<math>\theta</math>是[[单位阶跃函数]]。 === [[狄拉克方程]] === <math>\tilde{S}_F(p) = {1 \over \gamma^\mu p_\mu - m + i\epsilon} = {1 \over p\!\!\!/ - m + i\epsilon}. </math> <math>S_F(x-y) = \int{{d^4 p\over (2\pi)^4} \, e^{-i p \cdot (x-y)} }\, {(\gamma^\mu p_\mu + m) \over p^2 - m^2 + i \epsilon} = \left({\gamma^\mu (x-y)_\mu \over |x-y|^5} + { m \over |x-y|^3} \right) J_1(m |x-y|). </math> 传播子也是格林函数 <math>S_F(x-y) = (i \partial\!\!\!/ + m) G_F(x-y)</math> 这描述[[费米子]]、[[电子]]。 === [[量子电动力学]]和其他[[杨-米尔斯场论]] === {{Main|规范场论}} [[光子]]传播子是 <math>{-i g^{\mu\nu} \over p^2 + i\epsilon }.</math> <math> \frac{g_{\mu\nu} - k_\mu k_\nu / m^2}{k^2-m^2 + i \epsilon} + \frac{k_\mu k_\nu /m^2}{k^2 - m^2/\lambda + i \epsilon}.</math> <math>D_{\mu \nu}(k) = \frac{-i}{k^2 + i\epsilon} (g_{\mu \nu} - (1-\xi)\frac{k_{\mu}k_{\nu}}{k^2}) </math> 也阅读[[FP鬼子]],给予[[膠子]]传播子或杨米尔斯传播子: <math>\langle A_{\mu}^a(x)A_{\nu}^b(y)\rangle =D_{\mu \nu}(x-y)^{ab} = \int \frac{d^4k}{(2\pi)^4} \frac{-ie^{-ik(x-y)}}{k^2 + i\epsilon} \delta^{ab}(g_{\mu \nu} - (1-\xi)\frac{k_{\mu}k_{\nu}}{k^2}) </math> 选择<math>\xi</math> 需要[[规范固定]]。 === [[引力子]] === 重力子的传播子是<ref>{{Cite web|title=Quantum theory of gravitation|url=https://dspace.library.uu.nl/bitstream/handle/1874/4837/Quantum_theory_of_gravitation.pdf?sequence=2&isAllowed=y|accessdate=|author=|date=|format=|publisher=|language=|archive-date=2020-07-02|archive-url=https://web.archive.org/web/20200702193522/https://dspace.library.uu.nl/bitstream/handle/1874/4837/Quantum_theory_of_gravitation.pdf?sequence=2&isAllowed=y|dead-url=no}}</ref><ref>{{Cite web|title=Graviton and gauge boson propagators in AdSd+1|url=http://cds.cern.ch/record/378516/files/9902042.pdf|accessdate=|author=|date=|format=|publisher=|language=|archive-date=2018-07-25|archive-url=https://web.archive.org/web/20180725014800/http://cds.cern.ch/record/378516/files/9902042.pdf|dead-url=no}}</ref><ref>{{Cite book|title=Quantum Field Theory in Nutshell|last=Zee, Anthony|first=|publisher=|year=|isbn=|location=Princeton University Press|pages=}}</ref> <math>G_{abcd}(k) = \frac{g_{ac}g_{bd}+g_{bc}g_{ad} - g_{ab}g_{cd}}{k^2}</math> ==相关条目== * [[量子场论]] * [[格林函数]] * [[路径积分表述]] *[[费恩曼图]] == 参考文献 == {{Reflist}} == 阅读 == * Feynman Hibbs. Path integrals. *Peskin Schroeder. Intro QFT. *Huang. QFT. *https://web.physics.ucsb.edu/~mark/ms-qft-DRAFT.pdf {{Wayback|url=https://web.physics.ucsb.edu/~mark/ms-qft-DRAFT.pdf |date=20201111195944 }} {{Wayback|url=https://web.physics.ucsb.edu/~mark/ms-qft-DRAFT.pdf |date=20201111195944 }}<nowiki/>(Srendiecki QFT) * [[徐一鸿]] Anthony Zee. QFT in Nutshell. {{量子场论}} [[Category:量子力学]] [[Category:量子场论]] [[Category:理论物理]] [[Category:数学物理]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Equation box 1
(
查看源代码
)
Template:Internal link helper/en
(
查看源代码
)
Template:Main
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:量子场论
(
查看源代码
)
返回
传播子
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息