查看“︁休恩函数”︁的源代码
←
休恩函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{cleanup-jargon|time=2015-01-25T07:58:28+00:00}} '''Heun函数'''指HeunB、HeunC、HeunD、HeunG、HeunT等五个函数 ==HeunG 函数== [[File:HeunG.gif|thumb|300px|HeunG function]] HeunG函数'''是下列GeneralHeun方程的解 :<math>\frac {d^2w}{dz^2} + \left[\frac{\gamma}{z}+ \frac{\delta}{z-1} + \frac{\epsilon}{z-a} \right] \frac {dw}{dz} + \frac {\alpha \beta z -q} {z(z-1)(z-a)} w = 0.</math> ===奇点=== HeunG(a, b, \alpha, \beta, \gamma, \delta, z)函数有6个参数,有四个奇点 ===展开式=== <math>HeunG(a, b, \alpha, \beta, \gamma, \delta, z) =b*z/(\gamma*a)-(1/2)*(-b-b*a*\delta-b*\gamma*a+b*\delta-b*\alpha-b*\beta-b^2+\alpha*\beta*\gamma*a)*z^2/(\gamma*a^2*(\gamma+1))+O(z^3)</math> ===关系式=== :<math>HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = (1-z)^(1-\delta)*HeunG(a, q-(-1+\delta)*\gamma*a, \beta-\delta+1, \alpha-\delta+1, \gamma, 2-\delta, z) </math> :<math> [HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = (1-z/a)^(-\alpha-\beta+\gamma+\delta)*HeunG(a, q-\gamma*(\alpha+\beta-\gamma-\delta), -\beta+\gamma+\delta, -\alpha+\gamma+\delta, \gamma, \delta, z), And(a <> 0)] </math> :<math>[HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = (1-z)^(1-\delta)*(1-z/a)^(-\alpha-\beta+\gamma+\delta)*HeunG(a, q-\gamma*((-1+\delta)*a+\alpha+\beta-\gamma-\delta), -\beta+\gamma+1, -\alpha+\gamma+1, \gamma, 2-\delta, z), And(a <> 0)] </math> :<math> [HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = HeunG(1/a, q/a, \alpha, \beta, \gamma, \alpha+\beta-\gamma-\delta+1, z/a), And(a <> 0)] </math> :<math> [HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = (1-z)^(-\alpha)*HeunG(a/(-1+a), (-q+\gamma*\alpha*a)/(-1+a), \alpha, \alpha-\delta+1, \gamma, \alpha-\beta+1, z/(z-1)), And(a <> 1, z <> 1)] </math> :<math> </math> ===超几何函数关系=== :<math>[HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = hypergeom([\alpha, \beta], [\alpha+\beta-\delta+1], z), And(a = 0, q = 0)]</math> :<math>[HeunG(a, q, \alpha, \beta, \gamma, \delta, z) = hypergeom([\alpha, \beta], [\gamma], z)</math><math>(And(a = 1, q = \alpha*\beta), And(q = \alpha*\beta*a, \delta = \alpha+\beta-\gamma+1))]</math> ==HeunB函数== [[File:HeunB.gif|thumb|HeunB]] HeunB(a,b,c,d,z)是下列双合流方程的解 <math>y_zz-\frac{(\alpha+2*z+z^2*\alpha-2*z^3)}{(z+1)^2/(z-1)^2}*y_z+\frac{(\delta+(2*\alpha+\gamma)*z+\beta*z^2)}{(z-1)^3/(z+1)^3*y(z)};</math> ==HeunC函数== [[File:HeunC.gif|thumb|HeunC]] HeunC(a,b,c,d,z)是下列微分方程的解 <math>y_zz-\frac{(-z^2*a+(-2-b-c+a)*z+b+1)*y_z)}{(z*(z-1))}-\frac{(1/2)*(((-b-c-2)*a-2*d)*z+(b+1)*a+(-c-1)*b-c-2*e)*y}{(z*(z-1))}</math> ===关系式=== :<math>[HeunC(a, b, c, d, e, z) = (1-z)^(-c)*HeunC(a, b, -c, d, e, z), And(b::(Not(integer)), abs(z) < 1)]</math> :<math>[HeunC(a, b, c, d, e, z) = exp(-z*a)*HeunC(-a, b, c, d, e, z), And(b::(Not(integer)), abs(z) < 1)]</math> ==HeunD函数== [[File:HeunD.gif|thumb|HeunD]] HeunD(a,b,c,d,z)函数是下列微分方程的解 <math>y_zz-\frac{(-2*z^5+4*z^3+z^4*a-2*z-a)*y_z)}{((z-1)^3*(z+1)^3)}-\frac{(-z^2*b+(-c-2*a)*z-d)*y}{((z-1)^3*(z+1)^3)}</math> ===关系式=== <math>[HeunD(a, b, c, d, z) = HeunD(-a, -d, -c, -b, 1/z)]</math> ==HeunT函数== [[File:HeunT.gif|thumb|HeunT]] HeunT(a,b,c,z)函数是下列微分方程的解 <math>y_zz-(3*z^2+c)*y_z-((3-b)*z-a)*y</math> ===关系式=== <math>[HeunT(a, b, c, z) = HeunT(j*a, b, j^2*c, j*z), And(j^3 = 1)]</math> <math>[HeunT(a, b, c, z) = HeunT(a, -b, c, -z)*exp(z^3), And(c = 0)]</math> ==参考文献== <references/> *{{Citation | last1=Forsyth | first1=Andrew Russell | title=Theory of differential equations. 4. Ordinary linear equations | origyear=1906 | publisher=[[Dover Publications]] | location=New York | mr=0123757 | year=1959|url=http://www.archive.org/details/theorydiffeq04forsrich|pages=158}} * {{citation|first=Karl |last=Heun |url=http://www.digizeitschriften.de/resolveppn/GDZPPN00225140X |title= Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten|journal= Mathematische Annalen |volume=33|page= 161 |year=1889 |doi=10.1007/bf01443849}} *{{Citation | last1=Maier | first1=Robert S. | title=The 192 solutions of the Heun equation | arxiv=math/0408317 | doi=10.1090/S0025-5718-06-01939-9 | mr=2291838 | year=2007 | journal=[[Mathematics of Computation]] | volume=76 | issue=258 | pages=811–843}} *{{Citation | editor1-last=Ronveaux | editor1-first=A. | title=Heun's differential equations | publisher=The Clarendon Press Oxford University Press | series=Oxford Science Publications | isbn=978-0-19-859695-0 | mr=1392976 | year=1995}} *{{dlmf|id=31|title=Heun functions|first=B. D.|last=Sleeman|first2=V. B. |last2=Kuznetzov}} *{{Citation | last1=Valent | first1=Galliano | title=Difference equations, special functions and orthogonal polynomials | arxiv=math-ph/0512006 | publisher=World Sci. Publ., Hackensack, NJ | doi=10.1142/9789812770752_0057 | mr=2451210 | year=2007 | chapter=Heun functions versus elliptic functions | pages=664–686}} {{DEFAULTSORT:Heun}} [[Category:特殊函数]] [[Category:常微分方程]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cleanup-jargon
(
查看源代码
)
Template:Dlmf
(
查看源代码
)
返回
休恩函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息