度数矩阵

来自testwiki
跳转到导航 跳转到搜索

数学领域图论中,无向图的度数矩阵Template:Lang-en)是一个对角矩阵 ,其中包含的信息为的每一个顶点的度数,也就是每个顶点相邻的边数。[1] 它可以和邻接矩阵一起使用以构造图的拉普拉斯算子矩阵(拉普拉斯矩阵是度数矩阵和邻接矩阵的差值)。[2]

定义

给定一个图 G=(V,E)|V|=nG度数矩阵 D是一个 n×n对角线矩阵,其定义为[1]

di,j:={deg(vi)if i=j0otherwise

其中度数 deg(vi)为这个顶点上的边的条数。 在无向图中,这意味着每个环会使得度数增加2。 在有向图中,术语“”可以指“入度”(indegree,终点在这个顶点的边的条数)或“出度”( outdegree,起点在这个顶点的边的条数)。

例子

下面的无向图有一个6x6的度数矩阵,其数值为。

Vertex labeled graph 度数矩阵
(400000030000002000000300000030000001)

注意,对于无向图而言,开始和结束于同一节点的边(即环,如上图中的节点1)会使相应的度增加2(即被计算两次)。

性质

一个k-正则图的度数矩阵是恒为k的对角线矩阵。

根据度的总和公式,度数矩阵的是对应图的边数的两倍。

参考文献