本文件来自维基共享资源并可能被其他项目使用。
其文件描述页上的描述显示在下面。
摘要
1 − 2 + 3 − 4 + · · · as the Cauchy product of two copies of 1 − 1 + 1 − 1 + · · ·.
The illustration uses the rectangle metaphor for multiplication. One copy of 1 − 1 + 1 − 1 + · · · is depicted at the top, another at the left. A black length or area represents a positive quantity; a red length or area represents a negative quantity. Multiplying two line segments results in a rectangle whose color is determined by the law for multiplying signed numbers:
- 1 * 1 = 1
- −1 * 1 = −1
- 1 * −1 = −1
- −1 * −1 = 1
The double series resulting from the multiplication of the two single series is expressed as a single series using the Cauchy product rule. Each term of the resulting series is a combination of terms from the double series running from south-west to north-east. The result is identified as 1 − 2 + 3 − 4 + · · ·.
许可协议
文件历史
点击某个日期/时间查看对应时刻的文件。
| 日期/时间 | 缩略图 | 大小 | 用户 | 备注 |
| 当前 | 2007年3月13日 (二) 18:34 |  | 2,284 × 2,284(97 KB) | wikimediacommons>Melchoir | {{vector version available|Pm1234 Cauchy.svg}} == Summary == 1 − 2 + 3 − 4 + · · · as the Cauchy product of two copies of 1 − 1 + 1 − 1 + · · ·. The illustration uses th |
文件用途