艾克納方程

来自testwiki
imported>台北人2020年7月19日 (日) 14:51的版本 (添加模板 // Edit via Wikiplus)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

Template:河流系列模板

艾克納方程質量守恆的定理,是有關河流沉積物的質量守恆[1]。最早是由奧地利氣象學家及沈積物學家费利克斯·马力亚·埃克斯纳開始研究[2],艾克納方程因此而得名[3]

艾克納方程的重要性在於水深與斜度會影響其剪應力,從而引起地區侵蝕及堆積作用。

方程式

艾克納方程描述河流在河流作用下,Template:Le過程的質量守恆定理.河底的高度會隨累積的沈積物而漸漸增加(河流Template:Le),會因沈積物隨著河流清出而漸漸下降(陵夷作用)。

基礎方程式

此方程提到河床高度η隨著時間t的變化,等於沉积物通量散度的負值,除以颗粒填集密度(grain packing density)εo的結果

ηt=1εo𝐪𝐬

其中 εo 可以表示為 (1λp),其中 λp 為河床的孔隙率

自然界 εo 的範圍約在0.45 至0.75之間[4],若是球形顆粒依Template:Le的方式堆積,其數值約為 0.64,密堆积的上限為0.74048(參照最密堆积),但在自然界不太可能以最密堆積的方式堆積,因此多半是用隨機密堆積的方式進行,這也是較合理的上限。

一維的艾克納方程常會因為計算的方便或/及缺乏相關資料而出現。一般以是往下游的方向x為準,因為一般關注的也是隨著河流往下,河流的侵蚀作用堆積作用

ηt=1εo𝐪𝐬x

包括高度因外力變化的方程式

此情形下的艾克納方程會在質量守恆式子中包括地層下陷的項σ[5],這允許在河床高度因外在因素影響時,計算河床的絕對高度η對時間的變化,外在因素可能是地质构造或是地殼均衡造成的高度變化,若河床高度隨時間增加,σ 為正值,若河床高度隨時間減少增加,σ為負值。

ηt=1εo𝐪𝐬+σ

參考資料

Template:Reflist

Template:河流形态学

  1. Template:Cite journal
  2. Template:Cite book
  3. Parker, G. (2006), 1D Sediment Transport Morphodynamics with applications to Rivers and Turbidity Currents, Chapter 1, -{R|http://vtchl.uiuc.edu/people/parkerg/_private/e-bookPowerPoint/RTe-bookCh1IntroMorphodynamics.ppt}- Template:Wayback.
  4. Parker, G. (2006), 1D Sediment Transport Morphodynamics with applications to Rivers and Turbidity Currents, Chapter 4, -{R|http://vtchl.uiuc.edu/people/parkerg/_private/e-bookPowerPoint/RTe-bookCh4ConservationBedSed.ppt}- Template:Wayback.
  5. Template:Cite web