正方形

来自testwiki
118.165.40.175留言2024年10月2日 (三) 14:27的版本
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

Template:NoteTA Template:Infobox regular polygon平面几何学中,正方形是四邊相等且四個角是直角的四邊形[1]。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为正方形 ABCD。

正方形是二维的超方形,也是二维的正轴形

性质

正方形是正四边形,是特殊的矩形对称四边形平行四边形。其四个内角为直角。除了四边四角相等的性质,正方形还有以下性质:

面积和周长

正方形的面积是其边长的平方

正方形的周长是它的边长的4倍。如果边长为a,那么周长P=4a。正方形的面积是其边长的平方。如果边长为a,那么面积A=a2。如果我们知道正方形的对角线长d,那么我们也可以之计算面积A=d22,如果正方形边心距为r,外接圆半径是R,那么A=4r2。,A=2R2

若正方形的邊長為整數,其面積就是一個完全平方数。在周长固定时,正方形的面積一定大於其他非正方形的四邊形的面积。

对称性

正方形是一种高度对称的平面图形,它关于两条对角线的交点中心对称(这个点又被称作正方形的中心)。它的对称轴有四条,分别是对边中点的连线以及两条对角线。保持正方形不变的变换有8种,包括全等变换,以正方形中心为中心、角度为90度、180度和270度的旋转,以及关于四条对称轴的反射。这八个变换组成了一个,是二面体群中的一个,记作D4


全等变换,四个顶点都不变

r1(顺时针90°旋转)

r2(180°旋转)

r3(顺时针270°旋转)

fv垂直反射

fh水平反射

fd沿主对角线(左上至右下)反射

fc沿副对角线(右上至左下)反射
二面体群D4

正方形与无理数

公元前五世纪时,毕达哥拉斯学派最早证明了正方形的对角线长度与边长长度的比例:2,是无法表示为两个自然数的公比的。

使用圓規與直尺建構出正方形。

平面镶嵌

用同一种多边形不重疊地将平面“铺满”,称为平面的正镶嵌图。正方形是能够组成平面的正镶嵌图的三种正多边形之一(另外两种分别是正三角形正六边形)。

参考文献

Template:Reflist

参见

Template:Portal

Template:- Template:几何术语 Template:多邊形 Template:正多胞形 Template:Authority control