嵌入下推自动机

来自testwiki
imported>InternetArchiveBot2018年9月7日 (五) 05:08的版本 (补救1个来源,并将0个来源标记为失效。 #IABot (v2.0beta9))
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

嵌入下推自动机EPDA 是分析树-邻接文法(TAG)的计算模型。除了不再使用堆栈来存储符号之外,它类似于分析上下文无关文法下推自动机。它有存储符号的重复堆栈组成的一个栈,这给予了 TAG 在上下文无关文法和上下文有关文法之间的复杂度,或者说是适度上下文有关文法的子集。

历史和应用

EPDA 最初由 K. Vijay-Shanker 在他 1998 年的博士论文中描述[1]。它们已经被应用于更完整的描述适度上下文有关文法类,并向乔姆斯基层级扩展和精细了这个文法类。各种子文法,比如线性附标文法可以从而定义[2]。它们还在自然语言处理中扮演重要角色。

尽管自然语言有使用上下文无关文法来分析的传统(参见转换-生成语法计算语言学),但这个模型不适合有交叉依赖的语言如荷兰语,而 EPDA 就适合。详细的语言分析可见于引文[3]

理论

首先重申 EPDA 是有一组其自身可以通过“嵌入栈”来访问的栈的有限状态机,每个栈包含“栈字母表” Γ 的元素,并且我们通过 σiΓ* 定义一个栈的元素,这里的星号是字母表的Kleene闭包

每个栈都可以依据它的元素来定义,所以我们使用双剑符号来指示在自动机中的第 j 个栈: Υj=σj={σj,k,σj,k1,,σj,1},这里的 σk 将是在栈中的下一个可访问的符号。m 个栈的“嵌入栈”因此可以指示为 {Υj}={σm,σm1,,σ1}(Γ+)*

我们定义 EPDA 为七元组

M=(Q,Σ,Γ,δ,q0,QF,σ0) 这里的
  • Q 是“状态”的有限集合;
  • Σ 是“输入字母表”的有限集合;
  • Γ 是“栈字母表”的有限集合;
  • q0Q 是“开始状态”;
  • QFQ 只“最终状态”的集合;
  • σ0Γ 是“初始栈符号”
  • δ:Q×Σ×ΓS 是“转移函数”,这里的 SQ×(Γ+)*×Γ*×(Γ+)* 的有限子集。

所以转移函数选取一个状态,输入字符串的下一个符号,和当前栈的顶符号;并生成下一个状态,在“嵌入栈”上要压入和弹出的那些栈,当前栈的压入和弹出,和要在下一个转移中被当作当前栈的栈。更加概念的说,“嵌入栈”是被压入和弹出的,当前栈被随意的压回到“嵌入栈”,而你希望的任何其他栈将被压入它的顶部,带有最后的栈是在下一个重复中所读取的。所以,这些栈被同时压入当前栈的上面和下面。

一个给定的格局被定义为

C(M)={q,ΥmΥ1,x1,x2}Q×(Γ+)*×Σ*×Σ*

这里的 q 是当前状态,Υ 是在“嵌入栈”中的栈,带有 Υm 是当前栈,而对于输入字符串 x=x1x2Σ*, x1 是已经被机器处理的那部分字符串,而 x2 是要处理的那部分,带有它的头部是当前所读的符号。注意空串 ϵΣ 被隐含的定义为终止符号,如果机器处于最终状态此时读到空串,则整个输入字符串被“接受”,如果不是则“拒绝”。这种“接受”了的字符串是如下语言的元素

L(M)={x|{q0,Υ0,ϵ,x}M*{qF,ΥmΥ1,x,ϵ}}

这里的 qFQFM* 定义转移函数按需要而多次应用来分析这个字符串。

引用

Template:Reflist

Template:形式语言与形式文法