元定理

来自testwiki
imported>Cewbot2024年1月14日 (日) 08:10的版本 (清理跨語言連結元理論成為內部連結:編輯摘要的紅色內部連結乃正常現象,經繁簡轉換後存在,非bot錯誤編輯 (本次機械人作業已完成57.3%))
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

邏輯上,元定理是一個以元語言的對於形式系統的陳述。和在一個形式系統內證明的定理不同,元定理是在元理論中證明的,且可能涉及元理論中存在、但在對象理論中不存在的概念。

一個形式系統是由元語言和演繹系統(公理及推理規則)所決定的,這形式系統可用於證明系統中以形式語言表達的特定陳述;然而,元定理要以元定理系統以外的事物進行證明,而常見的元定理包括了集合論(尤其在模型論中)及Template:Link-en(尤其在證明論中)等等;此外,比起顯示特定的陳述可證明,元定理更常顯示說一大類的陳述是可證明的,或特定陳述是不可證明的。

例子

以下是元定理的一些例子:

參見

參考資料

  • Geoffrey Hunter (1969), Metalogic.
  • Alasdair Urquhart (2002), "Metatheory", A companion to philosophical logic, Dale Jacquette (ed.), p. 307

外部連結