截角超立方體:修订间差异

来自testwiki
跳转到导航 跳转到搜索
imported>A2569875
 
(没有差异)

2022年12月28日 (三) 11:29的最新版本

Template:NoteTA Template:Infobox polychoron 截角超立方体有24个:8个截角立方体,和16个正四面体

坐标

截角超立方体可以通过在每条棱距离顶点1/(2+2)处截断超立方体的每一个角来得到。每个截断的角会产生一个正四面体

一个棱长为2的截角超立方体的每个顶点的笛卡儿坐标系坐标为:

(±1, ±(1+2), ±(1+2), ±(1+2))

投影

正交投影
考克斯特平面 B4 B3 / D4 / A2 B2 / D3
Graph
二面体群 [8] [6] [4]
考克斯特平面 F4 A3
Graph
二面体群 [12/3] [4]

展开图

三维正交投影

参考文献

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] Template:Wayback
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Template:PolyCell
  • Template:KlitzingPolytopes o3o3o4o - tat, o3x3x4o - tah, x3x3o4o - thex


外部链接