普罗斯数:修订间差异
跳转到导航
跳转到搜索
imported>InternetArchiveBot 补救1个来源,并将0个来源标记为失效。) #IABot (v2.0.8.5 |
(没有差异)
|
2021年12月25日 (六) 04:54的最新版本
Template:NoteTA 普罗斯数是如下形式的数:
其中k是奇数,n是正数,且2n>k。
既是普罗斯数又是素数的整数,称为普罗斯素数。到2016年为止,已知最大的普罗斯素数是10223 · 231172165 + 1,由Szabolcs Peter发现,有9383761位。[1] Template:Wayback
例子
最初的几个普罗斯数为:Template:OEIS
- P0 = 21 + 1 = 3
- P1 = 22 + 1 = 5
- P2 = 23 + 1 = 9
- P3 = 3 × 22 + 1 = 13
- P4 = 24 + 1 = 17
- P5 = 3 × 23 + 1 = 25
- P6 = 25 + 1 = 33
最初的几个普罗斯素数为:Template:OEIS2C
- 3,5,13,17,41,97,113,193,241,257,353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857
普罗斯定理
Template:Main 普罗斯定理是判断普罗斯数是否为素数的方法。 如果p是普罗斯数,那么如果对于某个整数a,有
则p是素数。这是一个有实际用途的方法,因为如果p是素数,任何选定的a都有百分之50的概率满足这个关系式。