查看“︁KdV-mKdV方程”︁的源代码
←
KdV-mKdV方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''KdV-mKdV方程'''是一个非线性偏微分方程:<ref>李志斌编著 《非线性数学物理方程的行波解》 181页 科学出版社 2008</ref> <math>u_{t}+6*\alpha*u*u_{x}+6*\beta*u^2*u_{x}+\gamma*U_{xxx}=0</math> ==解析解== :<math>u(x, t) = -1/(2*\beta)-\sqrt(\beta*\gamma*(-1+_C1^2))*_C3*JacobiNC(-_C2-_C3*x+(1/2)*_C3*(-2*\beta*\gamma*_C3^2+4*\beta*_C3^2*\gamma*_C1^2-3)*t/\beta, _C1)/\beta</math> :<math>u(x, t) = -1/(2*\beta)+\sqrt(\beta*\gamma*(-1+_C1^2))*_C3*JacobiNC(-_C2-_C3*x+(1/2)*_C3*(-2*\beta*\gamma*_C3^2+4*\beta*_C3^2*\gamma*_C1^2-3)*t/\beta, _C1)/\beta</math> :<math>u(x, t) = -1/(2*\beta)-\sqrt(-\beta*\gamma*(-1+_C1^2))*_C3*JacobiND(_C2+_C3*x+(1/2)*_C3*(2*\beta*_C3^2*\gamma*_C1^2-4*\beta*\gamma*_C3^2+3)*t/\beta, _C1)/\beta</math> :<math>u(x, t) = -1/(2*\beta)+\sqrt(-\beta*\gamma*(-1+_C1^2))*_C3*JacobiND(_C2+_C3*x+(1/2)*_C3*(2*\beta*_C3^2*\gamma*_C1^2-4*\beta*\gamma*_C3^2+3)*t/\beta, _C1)/\beta</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C2*sech(_C1+_C2*x-(1/2)*_C2*(2*\beta*\gamma*_C2^2-3)*t/\beta)/\sqrt(\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C3*JacobiDN(_C2+_C3*x+(1/2)*_C3*(2*\beta*_C3^2*\gamma*_C1^2-4*\beta*\gamma*_C3^2+3)*t/\beta, _C1)/\sqrt(\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C2*cot(_C1+_C2*x-(1/2)*_C2*(4*\beta*\gamma*_C2^2-3)*t/\beta)/\sqrt(-\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C2*coth(_C1+_C2*x+(1/2)*_C2*(4*\beta*\gamma*_C2^2+3)*t/\beta)/\sqrt(-\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C2*csch(_C1+_C2*x-(1/2)*_C2*(2*\beta*\gamma*_C2^2-3)*t/\beta)/\sqrt(-\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C2*tan(_C1+_C2*x-(1/2)*_C2*(4*\beta*\gamma*_C2^2-3)*t/\beta)/\sqrt(-\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C2*tanh(_C1+_C2*x+(1/2)*_C2*(4*\beta*\gamma*_C2^2+3)*t/\beta)/\sqrt(-\beta*\gamma)</math> :<math>u(x, t) = -1/(2*\beta)-\gamma*_C3*JacobiNS(_C2+_C3*x+(1/2)*_C3*(2*\beta*\gamma*_C3^2+2*\beta*_C3^2*\gamma*_C1^2+3)*t/\beta, _C1)/\sqrt(-\beta*\gamma)</math> ==行波图== {| |[[File:Kdv-mKdv equation traveling wave plot 1.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 2.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 3.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 4.gif|thumb|Kdv-mKdv equation traveling wave plot]] |} {| |[[File:Kdv-mKdv equation traveling wave plot 5.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 6.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 7.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 8.gif|thumb|Kdv-mKdv equation traveling wave plot]] |} {| |[[File:Kdv-mKdv equation traveling wave plot 9.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 10.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 11.gif|thumb|Kdv-mKdv equation traveling wave plot]] |[[File:Kdv-mKdv equation traveling wave plot 12.gif|thumb|Kdv-mKdv equation traveling wave plot]] |} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]]
该页面使用的模板:
Template:非线性偏微分方程
(
查看源代码
)
返回
KdV-mKdV方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息