查看“︁ELEMENTARY”︁的源代码
←
ELEMENTARY
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[計算複雜度理論]]裡面,[[複雜度類]]'''ELEMENTARY'''是所有[[指數譜系]]裡面的複雜度類聯集: : <math> \begin{matrix} \mathrm{ELEMENTARY} & = & \mathrm{EXP}\cup\mathrm{2EXP}\cup\mathrm{3EXP}\cup\cdots \\ & = & \mathrm{DTIME}(2^{n})\cup\mathrm{DTIME}(2^{2^{n}})\cup \mathrm{DTIME}(2^{2^{2^{n}}})\cup\cdots \end{matrix} </math> 這名稱最早是為了探討[[可計算函數]]和[[不可判定問題]],由[[László Kalmár]]所提出;most problems in it are far from elementary。Some natural recursive problems lie outside ELEMENTARY, and are thus [[NONELEMENTARY]]。相當值得注意的,有一些[[原始遞歸函數]]問題不在ELEMENTARY內。我們已知: LOWER-ELEMENTARY <math>\subsetneq</math> [[EXPTIME]] <math>\subsetneq</math> ELEMENTARY <math>\subsetneq</math> [[PR (complexity)|PR]] 與ELEMENTARY僅包含有限的[[冪]](例如,<math>O(2^{2^n})</math>)比較,[[PR (複雜度)|PR]]使用的 [[超運算]]更一般化(例如,[[tetration]]),因此PR不包含於ELEMENTARY。 <!-- == 定義 == The definitions of elementary recursive functions are the same as for [[原始遞歸函數]]s, except that primitive recursion is replaced by bounded summation and bounded product. All functions work over the natural numbers. The basic functions, all of them elementary recursive, are: # '''Zero function'''. Returns zero: ''f''(x) = 0. # '''Successor function''': ''f''(''x'') = ''x'' + 1. Often this is denoted by ''S'', as in ''S''(''x''). Via repeated application of a successor function, one can achieve addition. # '''Projection functions''': these are used for ignoring arguments. For example, ''f''(''a'', ''b'') = ''a'' is a projection function. # '''Subtraction function''': ''f''(''x'', ''y'') = ''x'' - ''y'' if ''y'' < ''x'', or 0 if ''y'' ≥ ''x''. This function is used to define conditionals and iteration. From these basic functions, we can build other elementary recursive functions. # '''Composition''': applying values from some elementary recursive function as an argument to another elementary recursive function. In ''f''(''x''<sub>1</sub>, ..., ''x''<sub>n</sub>) = ''h''(''g''<sub>1</sub>(''x''<sub>1</sub>, ..., ''x''<sub>n</sub>), ..., ''g''<sub>m</sub>(''x''<sub>1</sub>, ..., ''x''<sub>n</sub>)) is elementary recursive if ''h'' is elementary recursive and each ''g''<sub>i</sub> is elementary recursive. # '''Bounded summation''': <math>f(m, x_1, \ldots, x_n) = \sum\limits_{i=0}^mg(i, x_1, \ldots, x_n)</math> is elementary recursive if ''g'' is elementary recursive. # '''Bounded product''': <math>f(m, x_1, \ldots, x_n) = \prod\limits_{i=0}^mg(i, x_1, \ldots, x_n)</math> is elementary recursive if ''g'' is elementary recursive. --> {{ComplexityClasses}} [[Category:複雜度類]]
该页面使用的模板:
Template:ComplexityClasses
(
查看源代码
)
返回
ELEMENTARY
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息