查看“︁DSW 方程”︁的源代码
←
DSW 方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''DSW 方程'''(Drinfeld-Solokov-Wilson equation)是一组非线性偏微分方程<ref>Esmaeil Alibeiki and Ahmad Neyrameh Application of Homotopy Perturbation Method to Nonlinear Drinfeld-Sokolov-Wilson Equation</ref>: <math>\frac{\partial u}{\partial t}+3*v*\frac{\partial v}{\partial x}=0</math> <math>\frac{\partial v}{\partial t}-2*\frac{\partial^3 v}{\partial x^3}+\frac{\partial u}{\partial x}*v+2u*\frac{\partial v}{\partial x}</math> ==解析解== DSW方程有多种解析解<ref>Esmaeil Alibeiki and Ahmad Neyrameh Application of Homotopy Perturbation Method to Nonlinear Drinfeld-Sokolov-Wilson Equation</ref> ===对称消减法=== [[File:DSW Equation symmetry reduction method animation.gif|thumb|left|200px|DSW Equation symmetry reduction method animation]] 用减对称法可求DSW方程的解析解<ref>B.Kauer, Symmetry Reduction Mothod for Exact Solution of some Nonlinear Systems p27</ref> <math>u(x,t) := -sqrt(2*m)*c2*tanh(c1+c2*(m*t-x))</math> 参数:c2 = .5, c1 = 1.4, m = 2.3 <math>u(x,t)=-.758*sqrt(2)*tanh(1.4+1.15*t-.5*x)</math> ===变分法=== [[File:DSW Equation variational method animation.gif|thumb|200px|DSW Equation variational method animation]] <math>u(x,t)=f := (3*c*(1/2))*sech(\sqrt{(1/2)*c}*(x-c*t))^2</math><ref>Wei-Min Zhang Solitary Solutions and Singular Periodic Solutions of the Drinfeld-Sokolov-Wilson Equation by Variational Approach,Applied Mathematical Sciences, Vol. 5, 2011, no. 38, 1887 - 1894</ref>。 ===达布变换法=== 利用[[达布变换]]可求DSW方程的解析解<ref>耿献国、吴丽华《Darboux Transformation and Explicit Solutions for Drinfeld–Sokolov–Wilson Equation</ref> <math>v := -(1/2)*k^2*(-1+\sqrt(3)*tanh(k^3*t+(1/2)*k*y)*cot((1/2)*\sqrt(3)*k*y))</math> [[File:DSW breather with Dabourx transform.gif|thumb|200px|left|DSW breather with Dabourx transform]] ==同伦法== [[File:Drinfeld-Sokolov-Wilson Equation Homotopy method animation.gif|thumb|200px|Drinfeld-Sokolov-Wilson Equation Homotopy method animation]] 利用[[同伦#函数的同伦|函数的同伦]],可求DSW方程的解析解<ref>Esmaeil Alibeiki and Ahmad Neyrameh,Application of Homotopy Perturbation Method to Nonlinear Drinfeld-Sokolov-Wilson Equation</ref>。 <math>u(x,t)=-360*t^2*sec(x)^2*tan(x)^4-396*t^2*sec(x)^2*tan(x)</math> <math>-60*t^2*sec(x)^2+360*t^2*sec(x)^4*tan(x)^2+72*t^2*sec(x)^4</math> ==行波分析法== {{Gallery |width=250 |height=200 |align=center |File:DSW equation traveling wave plot6.gif| |File:DSW equation traveling wave plot7.gif| |File:DSW equation traveling wave plot8.gif| |File:DSW equation traveling wave plot10.gif| |File:DSW equation traveling wave plot12.gif| |File:DSW equation traveling wave plot14.gif| }} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]] [[category:孤立子]]
该页面使用的模板:
Template:Gallery
(
查看源代码
)
Template:非线性偏微分方程
(
查看源代码
)
返回
DSW 方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息