查看“︁Coshc函数”︁的源代码
←
Coshc函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''Coshc函数'''常见于有关[[光学散射]]<ref>PN Den Outer, TM Nieuwenhuizen, A Lagendijk,Location of objects in multiple-scattering media,JOSA A, Vol. 10, Issue 6, pp. 1209-1218 (1993)</ref>、[[海森堡时空]]<ref>T Körpinar ,New characterizations for minimizing energy of biharmonic particles in Heisenberg spacetime - International Journal of Theoretical Physics, 2014 - Springer</ref>和[[双曲几何学]]的[[论文]]中<ref>Nilg¨un S¨onmez,A Trigonometric Proof of the Euler Theorem in Hyperbolic Geometry,International Mathematical Forum, 4, 2009, no. 38, 1877 - 1881</ref>其定义如下:<ref>JHM ten Thije Boonkkamp, J van Dijk, L Liu,Extension of the complete flux scheme to systems of conservation laws,J Sci Comput (2012) 53:552–568,DOI 10.1007/s10915-012-9588-5</ref><ref>Weisstein, Eric W. "Coshc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CoshcFunction.html{{dead link|date=2017年11月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> : <math>\operatorname{Coshc}(z)=\frac {\cosh(z) }{z}</math> 它是下列微分方程的一个解: <math>w \left( z \right) z-2\,{\frac {d}{dz}}w \left( z \right) -z{\frac {d^ {2}}{d{z}^{2}}}w \left( z \right) =0</math> [[File:Coshc 2D plot.png|thumb|Coshc 2D plot]] [[File:Coshc'(z) 2D plot.png|thumb|Coshc'(z) 2D plot]] ;复域虚部 *<math> \operatorname{Im} \left( \frac {\cosh(x+iy) }{x+iy} \right) </math> ;复域实部 *<math> \operatorname{Re} \left( \frac {\cosh \left( x+iy \right) }{x+iy} \right) </math> ;绝对值 *<math> \left| \frac {\cosh(x+iy) }{x+iy} \right| </math> ;一阶导数 *<math> \frac {\sinh(z)}{z} - \frac {\cosh(z)}{z^2} </math> ;导数实部 *<math> -\operatorname{Re} \left( -\frac {1- (\cosh(x+iy))^2}{x+iy} +\frac{\cosh(x+iy)}{(x+iy)^2} \right) </math> ;导数虚部 *<math>-\operatorname{Im} \left( -\frac {1-(\cosh(x+iy))^2}{x+iy} + \frac {\cosh(x+iy)}{(x+iy)^2} \right) </math> ;导数绝对值 *<math> \left| -\frac{1-(\cosh(x+iy))^2}{x+iy}+\frac {\cosh(x+iy)}{(x+iy)^2} \right| </math> ==表示为其他特殊函数== * <math>\operatorname{Coshc}(z)={\frac { \left( iz+1/2\,\pi \right) {{\rm M}\left(1,\,2,\,i\pi -2\,z\right)}}{{{\rm e}^{1/2\,i\pi -z}}z}} </math> *<math>\operatorname{Coshc}(z)=\frac{1}{2}\,{\frac { \left( 2\,iz+\pi \right) {\it HeunB} \left( 2,0,0,0, \sqrt {2}\sqrt {1/2\,i\pi -z} \right) }{{{\rm e}^{1/2\,i\pi -z}}z}} </math> * <math>\operatorname{Coshc}(z)= {\frac {-i \left( 2\,iz+\pi \right) {{\rm \mathbf WhittakerM}\left(0,\,1/2,\,i\pi -2\,z\right)}}{ \left( 4\,iz+2\,\pi \right) z}} </math> ==级数展开== : <math>\operatorname{Coshc} z \approx ({z}^{-1}+{\frac {1}{2}}z+{\frac {1}{24}}{z}^{3}+{\frac {1}{720}}{z}^{5}+{\frac {1}{40320}}{z}^{7}+{\frac {1}{3628800}}{z}^{9}+{\frac {1}{ 479001600}}{z}^{11}+{\frac {1}{87178291200}}{z}^{13}+O \left( {z}^{15} \right) )</math> ==图集== {| |[[File:Coshc abs complex 3D plot.png|thumb|Coshc abs complex 3D]] |[[File:Coshc Im complex 3D plot.png|thumb|Coshc Im complex 3D plot]] |[[File:Coshc Re complex 3D plot.png|thumb|Coshc Re complex 3D plot]] |} {| |[[File:Coshc'(z) Im complex 3D plot.png|thumb|Coshc'(z) Im complex 3D plot]] |[[File:Coshc'(z) Re complex 3D plot.png|thumb|Coshc'(z) Re complex 3D plot]] |[[File:Coshc'(z) abs complex 3D plot.png|thumb|Coshc'(z) abs complex 3D plot]] | |} {| |[[File:Coshc'(x) abs density plot.JPG|thumb|Coshc'(x) abs density plot]] |[[File:Coshc'(x) Im density plot.JPG|thumb|Coshc'(x) Im density plot]] |[[File:Coshc'(x) Re density plot.JPG|thumb|Coshc'(x) Re density plot]] |} ==参见== *[[Tanc函数]] *[[Tanhc函数]] *[[Sinhc函数]] ==参考文献== <references/> [[Category:特殊函数]]
该页面使用的模板:
Template:Dead link
(
查看源代码
)
返回
Coshc函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息