查看“︁2的幂”︁的源代码
←
2的幂
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} [[Image:Ten octaves visualization.svg|thumb|從1到1024(2<sup>0</sup> 至 2<sup>10</sup>)]] '''2的幂'''是指符合<math>2^n</math>型式,而<math>n</math>也是[[整數]]的數,也就是[[底數 (指數)|底數]]為[[2]],指數為整數{{mvar|n}}的[[幂]]。 在有些情形下,會將<math>n</math>限制在正整數及零的範圍內<ref>{{cite book |title=Schaum's Outline of Theory and Problems of Essential Computer Mathematics |url=https://archive.org/details/schaumsoutlineof0000lips_b9v3 |first=Seymour |last=Lipschutz |year=1982 |isbn=0-07-037990-4 |page=[https://archive.org/details/schaumsoutlineof0000lips_b9v3/page/3 3] |publisher=McGraw-Hill |location=New York}}</ref>,因此2的幂包括1、2以及2自乘多次的乘積<ref>{{cite book |title=Mathematics Masterclasses |first=Michael J. |last=Sewell |year=1997 |isbn=0-19-851494-8 |page=78 |publisher=Oxford University Press |location=Oxford}}</ref>。 因為2是[[二進制]]的底數,因此在常出現二進制的[[電腦科學]]中,2的幂也很常見。若將2的幂用二進制表示,會是100…000、0.00…001或是1的形式,類似用[[十進制]]表示[[10的幂]]的情形。 ==表示方法== * <math>2^n</math> * <math>2 \uparrow n</math> * <math>2[3]n</math> * <code>2 ^ n</code> * <code>2 ** n</code> * <code>power(2, n)</code> * 2的n次幂 * 2的n次方 ==與2的冪有關的數字== *比某一个2的幂小1的[[素数]],在数学上称为[[梅森素数]];例如数字3是最小的梅森素数(<math>3=4-1=2^2-1</math>)。 *比某一个2的幂大1的素数,在数学上称为[[费马素数]];如数字3也是最小的费马素数(<math>3=2+1=2^1+1</math>)。 *一个以2的幂为分母的分数称为[[二进有理数]]。 *可以表示为连续正整数和的数称为[[礼貌数]],2的幂不會是礼貌数。 == 2的幂列表 == <math>2^n, n\in [0,63], n\in Z</math> {| class="wikitable" style="text-align:center" |- style="background:#f9f9f9;" |'''2<sup>0</sup>''' || = ||align="right"| '''[[1]]''' |bgcolor="white" rowspan=16| |'''2<sup>16</sup>'''|| = ||align="right"| '''[[65536|65,536]]''' |bgcolor="white" rowspan=16| |'''2<sup>32</sup>'''|| = ||align="right"| '''4,294,967,296''' |bgcolor="white" rowspan=16| |'''2<sup>48</sup>'''|| = ||'''281,474,976,710,656''' |----- |2<sup>1</sup> || = ||align="right"| [[2]] |2<sup>17</sup>|| = ||align="right"| 131,072 |2<sup>33</sup>|| = ||align="right"| 8,589,934,592 |2<sup>49</sup> |= |562,949,953,421,312 |----- |2<sup>2</sup> || = ||align="right"| [[4]] |2<sup>18</sup>|| = ||align="right"| 262,144 |2<sup>34</sup>|| = ||align="right"| 17,179,869,184 |2<sup>50</sup> |= |1,125,899,906,842,624 |----- |2<sup>3</sup> || = ||align="right"| [[8]] |2<sup>19</sup>|| = ||align="right"| 524,288 |2<sup>35</sup>|| = ||align="right"| 34,359,738,368 |2<sup>51</sup> |= |2,251,799,813,685,248 |----- |'''2<sup>4</sup>''' || = ||align="right"| '''[[16]]''' |'''2<sup>20</sup>'''|| = ||align="right"| '''1,048,576''' |'''2<sup>36</sup>'''|| = ||align="right"| '''68,719,476,736''' |'''2<sup>52</sup>''' |= |'''4,503,599,627,370,496''' |----- |2<sup>5</sup> || = ||align="right"| [[32]] |2<sup>21</sup>|| = ||align="right"| 2,097,152 |2<sup>37</sup>|| = ||align="right"| 137,438,953,472 |2<sup>53</sup> |= |9,007,199,254,740,992 |----- |2<sup>6</sup> || = ||align="right"| [[64]] |2<sup>22</sup>|| = ||align="right"| 4,194,304 |2<sup>38</sup>|| = ||align="right"| 274,877,906,944 |2<sup>54</sup> |= |18,014,398,509,481,984 |----- |2<sup>7</sup> || = ||align="right"| [[128]] |2<sup>23</sup>|| = ||align="right"| 8,388,608 |2<sup>39</sup>|| = ||align="right"| 549,755,813,888 |2<sup>55</sup> |= |36,028,797,018,963,968 |----- |'''2<sup>8</sup>''' || = ||align="right"| '''[[256]]''' |'''2<sup>24</sup>'''|| = ||align="right"| '''16,777,216''' |'''2<sup>40</sup>'''|| = ||align="right"| '''1,099,511,627,776''' |'''2<sup>56</sup>''' |= |'''72,057,594,037,927,936''' |----- |2<sup>9</sup> || = ||align="right"| [[512]] |2<sup>25</sup>|| = ||align="right"| 33,554,432 |2<sup>41</sup>|| = ||align="right"| 2,199,023,255,552 |2<sup>57</sup> |= |144,115,188,075,855,872 |----- |2<sup>10</sup> || = ||align="right"| [[1024|1,024]] |2<sup>26</sup>|| = ||align="right"| 67,108,864 |2<sup>42</sup>|| = ||align="right"| 4,398,046,511,104 |2<sup>58</sup> |= |288,230,376,151,711,744 |----- |2<sup>11</sup> || = ||align="right"| [[2000#2048|2,048]] |2<sup>27</sup>|| = ||align="right"| 134,217,728 |2<sup>43</sup>|| = ||align="right"| 8,796,093,022,208 |2<sup>59</sup> |= |576,460,752,303,423,488 |- |'''2<sup>12</sup>''' |= |'''[[4096|4,096]]''' |'''2<sup>28</sup> ''' |= |'''268,435,456''' |'''2<sup>44</sup>''' |= |'''17,592,186,044,416''' |'''2<sup>60</sup>''' |= |'''1,152,921,504,606,846,976''' |- |2<sup>13</sup> |= |[[8192|8,192]] |2<sup>29</sup> |= |536,870,912 |2<sup>45</sup> |= |35,184,372,088,832 |2<sup>61</sup> |= |2,305,843,009,213,693,952 |- |2<sup>14</sup> |= |[[16384|16,384]] |2<sup>30</sup> |= |1,073,741,824 |2<sup>46</sup> |= |70,368,744,177,664 |2<sup>62</sup> |= |4,611,686,018,427,387,904 |- |2<sup>15</sup> |= |[[32768|32,768]] |2<sup>31</sup> |= |2,147,483,648 |2<sup>47</sup> |= |140,737,488,355,328 |2<sup>63</sup> |= |9,223,372,036,854,775,808 |} == 2的2的幂次方列表 == : 2<sup>2<sup>0</sup></sup> = 2<sup>1</sup> = [[2]] : 2<sup>2<sup>1</sup></sup> =2<sup>2</sup> = [[4]] : 2<sup>2<sup>2</sup></sup> =2<sup>4</sup> = [[16]] : 2<sup>2<sup>3</sup></sup> =2<sup>8</sup> = [[256]] : 2<sup>2<sup>4</sup></sup> =2<sup>16</sup> = [[65536|65,536]] : 2<sup>2<sup>5</sup></sup> =2<sup>32</sup> = 4,294,967,296 : 2<sup>2<sup>6</sup></sup> =2<sup>64</sup> = 18,446,744,073,709,551,616 : 2<sup>2<sup>7</sup></sup> =2<sup>128</sup> = 340,282,366,920,938,463,463,374,607,431,768,211,456 : 2<sup>2<sup>8</sup></sup> =2<sup>256</sup> = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936 ==參考資料== {{reflist}} ==相關條目== *[[二進制]] *[[等比数列]] *[[以2爲底的對數]] *[[Octave (電子學)]] *{{le|無和數列|Sum-free sequence}} *{{le|勾德數列|Gould's sequence}} *[[2048 (遊戲)|2048]](與2的冪有關的電子遊戲) *[[国际象棋盘与麦粒问题]] *[[汉诺塔|漢諾塔]] *[[淘汰制]] *[[音符]] {{級數}} [[Category:数]] [[Category:整數]] [[Category:整數數列]] [[Category:二进制算术]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Mvar
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:級數
(
查看源代码
)
返回
2的幂
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息