查看“︁黃金菱形”︁的源代码
←
黃金菱形
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[Image:GoldenRhombus.svg|240px|thumb|黃金菱形]] 在[[幾何學]]中,'''黃金菱形'''是指兩對角線長度的比值呈[[黃金比例]]的菱形<ref name=senechal>{{citation | last = Senechal | first = Marjorie | editor1-last = Davis | editor1-first = Chandler | editor2-last = Ellers | editor2-first = Erich W. | contribution = Donald and the golden rhombohedra | isbn = 0-8218-3722-2 | mr = 2209027 | pages = 159–177 | publisher = American Mathematical Society, Providence, RI | title = The Coxeter Legacy | year = 2006}}</ref>: :<math>{D\over d} = \varphi = {{1+\sqrt5}\over2} \approx 1.618~034</math> 其中<math>D</math>為長對角線的長度、<math>d</math>為短對角線的長度。而由[[黃金矩形]]中取到的[[伐里農平行四邊形]]皆為黃金菱形。<ref name=senechal/> 有數種知名的多面體皆由黃金菱形組成,例如{{link-en|比林斯基十二面體|Bilinski_dodecahedron}}<ref>{{cite journal | author=Branko Grünbaum | title=The Bilinski Dodecahedron and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra, and Otherhedra | year=2010 | volume=32 | issue=4 | pages=5–15 | url=https://dlib.lib.washington.edu/researchworks/bitstream/handle/1773/15593/Bilinski_dodecahedron.pdf | deadurl=yes | archiveurl=https://web.archive.org/web/20150402132516/https://dlib.lib.washington.edu/researchworks/bitstream/handle/1773/15593/Bilinski_dodecahedron.pdf | archivedate=2015-04-02 | df= | access-date=2020-08-04 }}</ref><ref>H.S.M Coxeter, "Regular polytopes", Dover publications, 1973.</ref>、[[菱形三十面體]]<ref name="RhombicTriacontahedron.Mathworld">{{cite mathworld|urlname=RhombicTriacontahedron|title=Rhombic Triacontahedron}}</ref>等。特別地,有另一種菱形也與[[黃金比例]]相關聯,即{{link-en|潘洛斯鑲嵌|Penrose_tiling}}中的菱形,但不同之處在於,{{link-en|潘洛斯鑲嵌|Penrose_tiling}}中的菱形是邊長與對角線的比為黃金比例,而黃金菱形則是指兩對角線比值為黃金比例的菱形。<ref>{{citation | last = Livio | first = Mario | location = New York | page = 206 | publisher = Broadway Books | title = The Golden Ratio: The Story of Phi, the World's Most Astonishing Number | year = 2002}}</ref> == 性質 == {{Main|菱形}} 黃金菱形是菱形中的一個特例,其基本性質與菱形相同。以下討論黃金菱形的特別性質。 === 內角 === 黃金菱形的內角為<ref name=ogawa>{{citation | last = Ogawa | first = Tohru | date = January 1987 | doi = 10.4028/www.scientific.net/msf.22-24.187 | journal = Materials Science Forum | pages = 187–200 | title = Symmetry of three-dimensional quasicrystals | volume = 22-24}}. See in particular table 1, p. 188.</ref>: *銳角:<math>\alpha=2\arctan{1\over\varphi}</math> ; :<math>\alpha=\arctan{{2\over\varphi}\over{1-({1\over\varphi})^2}}=\arctan{{2\over\varphi}\over{1\over\varphi}}=\arctan2\approx63.43495^\circ.</math> : *鈍角:<math>\beta=2\arctan\varphi=\pi-\arctan2\approx116.56505^\circ,</math> :這個角度值與[[正十二面體]]相同<ref>{{citation | last = Gevay | first = G. | date = June 1993 | doi = 10.1080/01411599308210255 | issue = 1-3 | journal = Phase Transitions | pages = 47–50 | title = Non-metallic quasicrystals: Hypothesis or reality? | volume = 44}}</ref> === 邊長與對角線長 === 由於菱形也是一種[[平行四邊形]]<ref>{{Cite book | author=Zalman Usiskin and Jennifer Griffin | title="The Classification of Quadrilaterals. A Study of Definition" | url=https://books.google.com/books?id=ff0nDwAAQBAJ&printsec=frontcover#v=onepage&q=rhombus&f=false | archive-url=https://web.archive.org/web/20200226195300/https://books.google.com/books?id=ff0nDwAAQBAJ&printsec=frontcover#v=onepage&q=rhombus&f=false | archive-date=2020-02-26 | publisher=Information Age Publishing | year=2008 | page=pp. 55-56 | access-date=2020-08-15 | dead-url=no }}</ref>,因此黃金菱形的邊長與對角線長可以用[[平行四邊形恆等式]]得出<ref>{{cite mathworld|id=Rhombus|title=Rhombus}}</ref>: 黃金菱形的邊長<math>a</math>與對角線長<math>d</math>具有以下關係: *<math>a={1\over2}\sqrt{d^2+(\varphi d)^2}={1\over2}\sqrt{1+\varphi^2}~d={{\sqrt{2+\varphi}}\over2}~d={1\over4}\sqrt{10+2\sqrt5}~d\approx0.95106~d~.~</math> :因此,可以用<math>a</math>來表示長對角線<math>D</math>與短對角線<math>d</math>:<ref name=ogawa/> *<math>d={2a\over\sqrt{2+\varphi}}=2\sqrt{{3-\varphi}\over5}~a=\sqrt{2-{2\over\sqrt5}}~a\approx1.05146~a~.</math> *<math>D={2\varphi a\over\sqrt{2+\varphi}}=2\sqrt{{2+\varphi}\over5}~a=\sqrt{2+{2\over\sqrt5}}~a\approx1.70130~a~.</math> === 面積 === 已知短對角線長<math>d</math>時,黃金菱形的的面積為<ref name=Mathworld/>: :<math>A = {{(\varphi d)\cdot d}\over2} = {{\varphi}\over2}~d^2 = {{1+\sqrt5}\over4}~d^2 \approx 0.80902~d^2~.</math> 已知邊長為<math>a</math>時,黃金菱形的的面積為<ref name=ogawa/><ref name=Mathworld>{{cite mathworld|urlname=GoldenRhombus |title=Golden Rhombus}}</ref>: :<math>A = (\sin(\arctan2))~a^2 = {2\over\sqrt5}~a^2 \approx 0.89443~a^2~.</math> ==在多面體中== 黃金菱形出現在許多高對稱性的多面體中,例如[[菱形三十面體]]([[截半二十面体]]的對偶多面體)<ref name="RhombicTriacontahedron.Mathworld">{{cite mathworld|urlname=RhombicTriacontahedron|title=Rhombic Triacontahedron}}</ref>、[[菱形六十面體]]([[菱形三十面體]]的星形化體)<ref>{{cite mathworld|title=Rhombic hexecontahedron|urlname=RhombicHexecontahedron}} </ref>。黃金菱形也構成了許多知名的多面體,例如{{link-wd|Q98398187}}、{{link-en|比林斯基十二面體|Bilinski dodecahedron}}和[[菱形二十面體]]等。由全部皆由黃金菱形組成的凸多面體僅有兩種黃金菱形六面體、比林斯基十二面體、菱形二十面體以及菱形三十面體五種。而不考慮[[凹凸性 (幾何)|凹凸性]](即允許非凸多面體),則有無限多種多面體可以包含黃金菱形<ref>{{citation |last = Grünbaum |first = Branko |doi = 10.1007/s00283-010-9138-7 |issue = 4 |journal = The Mathematical Intelligencer |mr = 2747698 |pages = 5–15 |title = The Bilinski dodecahedron and assorted parallelohedra, zonohedra, monohedra, isozonohedra, and otherhedra |url = https://dlib.lib.washington.edu/researchworks/bitstream/handle/1773/15593/Bilinski_dodecahedron.pdf |volume = 32 |year = 2010 |archiveurl = https://web.archive.org/web/20150402132516/https://dlib.lib.washington.edu/researchworks/bitstream/handle/1773/15593/Bilinski_dodecahedron.pdf |archivedate = 2015-04-02 |accessdate = 2020-08-04 |dead-url = no }}.</ref>。 <gallery> File:Acute_golden_rhombohedron.png|銳角{{link-wd|Q98398187}} File:Flat_golden_rhombohedron.png|鈍角黃金菱形六面體 File:Bilinski dodecahedron.png|{{link-en|比林斯基十二面體|Bilinski dodecahedron}} File:Rhombic icosahedron.png|[[菱形二十面體]] File:Rhombictriacontahedron.svg|[[菱形三十面體]] File:Rhombic hexecontahedron.png|[[菱形六十面體]] </gallery> ==參見== * [[黄金三角形]] == 參考文獻 == {{reflist}} == 外部連結 == * [https://azimpremjiuniversity.edu.in/SitePages/resources-ara-march-2017-from-a-golden-rectangle-to-a-golden-quadrilateral.aspx From a golden rectangle to a golden rhombus and other golden quadrilaterals] {{Wayback|url=https://azimpremjiuniversity.edu.in/SitePages/resources-ara-march-2017-from-a-golden-rectangle-to-a-golden-quadrilateral.aspx |date=20181023160438 }} Explores some aspects of possible golden rhombi (and golden parallelograms) {{貴金屬比例}} [[Category:四邊形]] [[Category:黃金比例]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite mathworld
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Link-wd
(
查看源代码
)
Template:Main
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:貴金屬比例
(
查看源代码
)
返回
黃金菱形
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息