查看“︁马丢函数”︁的源代码
←
马丢函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:MathieuCE 3d 1.gif|thumb|MathieuCE 3D]] [[File:MathieuSE 3d.gif|thumb|MathieuSE 3D]] '''马丟函数'''({{lang-fr|Équation de Mathieu}})是1868年[[法國]][[數學家]]{{tsl|fr|Émile Mathieu|以米里迂·拉·馬丢}}因研究[[数学物理]]所推得的[[特殊函數]],下列马丟方程的解析解: :<math> \frac{d^2y}{dx^2}+[a-2q\cos (2x) ]y=0. </math> 马丟方程有两个线性无关的解: ;奇数解 MathieuCE(n, q, x),或记为<math>w_{I}(n,q,x)</math>, ;偶数解 MathieuSE(n, q, x).或记为<math>w_{II}(n,q,x)</math> 称为基本解<ref name=W>王竹溪 郭敦仁 603</ref> ==周期性== 马丟函数 MathieuC(a,q,z) 或 MathieuS(a,q,z) 只有一个是周期为 <math>\pi</math> 或<math>2\pi</math>的周期解,另一个不是。 马丟函数 MathieuC(a,q,z) 和 MathieuS(a,q,z) 两者都有是周期为<math>2n\pi</math>(n≥2)的周期函数。 <ref name=W>604页</ref> <gallery> File:MathieuCE 2d 1.gif File:MathieuCE 2d 2.gif File:MathieuCE 2d 4.gif File:MathieuSE 2d 3.gif </gallery> ==正交性== * <math>\int_{0}^{2*\pi}\! ce_m(x,q)*ce_n(x,q)\,dx=0 </math> * <math>\int_{0}^{2*\pi}\! ce_m(x,q)*se_n(x,q)\,dx=0 </math> * <math>\int_{0}^{2*\pi}\! se_m(x,q)*se_n(x,q)\,dx=0 </math> ==特征方程== [[File:Mathieu eigenvalue a.gif|thumb|Mathieu Eigen value a(n,q)]] [[File:Mathieu eigenvalue b.gif|thumb|Mathieu eigenvalue b(n,q)]] 马丟方程的特征方程是<ref name=W>605页</ref> <math>cos(\pi*v)=w_I(a,q,\pi)</math> <math>cos(\pi*v)=w_{II}(b,q,\pi)</math> 对于给定的v,q, 上列特征方程给出无穷多个a、b解称为特征值。 ===特征值的展开=== 马丟函数体特征值可展开成级数:<ref name=FRa>Frank p659</ref> <math>a_0(q)= {-(1/2)*z^2+(7/128)*z^4-(29/2304)*z^6+(68687/18874368)*z^8+\mathcal{O}(z^{10})} </math> <math>a_1(q)= {1+z-(1/8)*z^2-(1/64)*z^3-(1/1536)*z^4+(11/36864)*z^5+(49/589824)*z^6+(55/9437184)*z^7-(83/35389440)*z^8-(12121/15099494400)*z^9+\mathcal{O}(z^{10})} </math> <math>a_2(q)={4+(5/12)*z^2-(763/13824)*z^4+(1002401/79626240)*z^6-(1669068401/458647142400)*z^8+\mathcal{O}(z^{10})} </math> <math>a_3(q)= {9+(1/16)*z^2+(1/64)*z^3+(13/20480)*z^4-(5/16384)*z^5-(1961/23592960)*z^6-(609/104857600)*z^7+(4957199/2113929216000)*z^8+(872713/1087163596800)*z^9+\mathcal{O}(z^{10})} </math> <math>b_1(q)={1-z-(1/8)*z^2+(1/64)*z^3-(1/1536)*z^4-(11/36864)*z^5+(49/589824)*z^6-(55/9437184)*z^7-(83/35389440)*z^8+(12121/15099494400)*z^9+\mathcal{O}(z^{10})} </math> <math>b_2(q)={4-(1/12)*z^2+(5/13824)*z^4-(289/79626240)*z^6+(21391/458647142400)*z^8+\mathcal{O}(z^{10})} </math> <math>b_3(q)= {9+(1/16)*z^2-(1/64)*z^3+(13/20480)*z^4+(5/16384)*z^5-(1961/23592960)*z^6+(609/104857600)*z^7+(4957199/2113929216000)*z^8-(872713/1087163596800)*z^9+\mathcal{O}(z^{10})} </math> <math>b_4(q)= {16+(1/30)*z^2-(317/864000)*z^4+(10049/2721600000)*z^6-(93824197/2006581248000000)*z^8+\mathcal{O}(z^{10})} </math> <math>b_5(q)= {25+(1/48)*z^2+(11/774144)*z^4-(1/147456)*z^5+(37/891813888)*z^6+(7/339738624)*z^7+(63439/201364441399296)*z^8+(1/2130840649728)*z^9+\mathcal{O}(z^{10})} </math> ==级数展开== 马丟函数ce,se的级数展开<ref name=F>Frank p660</ref> <math>ce_0(z,q)= {1-(1/2)*cos(2*z)*q+(-1/16+(1/32)*cos(4*z))*q^2+((11/128)*cos(2*z)-(1/1152)*cos(6*z))*q^3+O(q^4)} </math> <math>ce_1(z,q)= {cos(z)-(1/8)*cos(3*z)*q+(-(1/128)*cos(z)-(1/64)*cos(3*z)+(1/192)*cos(5*z))*q^2+(-(1/512)*cos(z)+(1/3072)*cos(3*z)+(1/1152)*cos(5*z)-(1/9216)*cos(7*z))*q^3+O(q^4)} </math> <math>ce_2(z,q)= {cos(2*z)+(1/4-(1/12)*cos(4*z))*q+(-(19/288)*cos(2*z)+(1/384)*cos(6*z))*q^2+(-49/1152+(11/4608)*cos(4*z)-(1/23040)*cos(8*z))*q^3+O(q^4)} </math> <math>ce_3(z,q)= {cos(3*z)+((1/8)*cos(z)-(1/16)*cos(5*z))*q+(-(5/512)*cos(3*z)+(1/64)*cos(z)+(1/640)*cos(7*z))*q^2+(-(1/512)*cos(3*z)-(1/4096)*cos(z)+(11/40960)*cos(5*z)-(1/46080)*cos(9*z))*q^3+O(q^4)} </math> <math>ce_4(z,q)= {cos(4*z)+((1/12)*cos(2*z)-(1/20)*cos(6*z))*q+(-(17/3600)*cos(4*z)+1/192+(1/960)*cos(8*z))*q^2+((7/28800)*cos(2*z)+(29/288000)*cos(6*z)-(1/80640)*cos(10*z))*q^3+O(q^4)} </math> <math>se_1(z,q)= {sin(z)-(1/8)*sin(3*z)*q+(-(1/128)*sin(z)+(1/64)*sin(3*z)+(1/192)*sin(5*z))*q^2+((1/512)*sin(z)+(1/3072)*sin(3*z)-(1/1152)*sin(5*z)-(1/9216)*sin(7*z))*q^3+O(q^4)} </math> <math>se_2(z,q)= {sin(2*z)-(1/12)*sin(4*z)*q+(-(1/288)*sin(2*z)+(1/384)*sin(6*z))*q^2+((1/1536)*sin(4*z)-(1/23040)*sin(8*z))*q^3+O(q^4)} </math> <math>se_3(z,q)= {sin(3*z)+((1/8)*sin(z)-(1/16)*sin(5*z))*q+(-(5/512)*sin(3*z)-(1/64)*sin(z)+(1/640)*sin(7*z))*q^2+((1/512)*sin(3*z)-(1/4096)*sin(z)+(11/40960)*sin(5*z)-(1/46080)*sin(9*z))*q^3+O(q^4)} </math> <math>se_4(z,q)= {sin(4*z)+((1/12)*sin(2*z)-(1/20)*sin(6*z))*q+(-(17/3600)*sin(4*z)+(1/960)*sin(8*z))*q^2+(-(1/1600)*sin(2*z)+(29/288000)*sin(6*z)-(1/80640)*sin(10*z))*q^3+O(q^4)} </math> <math>se_5(z,q)= {sin(5*z)+((1/16)*sin(3*z)-(1/24)*sin(7*z))*q+(-(13/4608)*sin(5*z)+(1/384)*sin(z)+(1/1344)*sin(9*z))*q^2+(-(7/73728)*sin(3*z)+(13/258048)*sin(7*z)-(1/9216)*sin(z)-(1/129024)*sin(11*z))*q^3+O(q^4)} </math> ==傅立叶展开式== 马丟函数的傅立叶展开:<ref name=F>Frank p656-657</ref> * <math>MathieuCE(2n, q, x)=\sum_{m=0}^{\infty}A_{2m}^{2n}(q)cos(2mx)</math> * <math>MathieuCE(2n+1, q, x)=\sum_{m=0}^{\infty}A_{2m+1}^{2n+1}(q)cos[(2m+1)x]</math> *<math>MathieuSE(2n+1,q,x)=\sum_{m=0}^{\infty}B_{2m+1}^{2n+1}(q)sin[(2m+1)x]</math> *<math>MathieuSE(2n+2,q,x)=\sum_{m=0}^{\infty}B_{2m+2}^{2n+2}(q)sin[(2m+2)x]</math> 其中系数A,B满足下列递归关系:<ref name=F>Frank J. Oliver p656</ref> <math>aA_0=qA_2</math> <math>(a-4)A_2=q(2A_0+A_4)</math> <math>(a-4m^2)A_{2m}=q(A_{2m-2}+A_{2m+2})</math> <math>(a-1+q)B_1=qB_3</math> <math>(a-(2m+1)^2)B_{2m+1}=q(B_{2m-1}+B_{2m+1})</math> ==关系式== 马丟方程的基本解<math>W_I W_{II} </math>满足下列关系:<ref name=F>NIST p653</ref>: :<math>\begin{vmatrix} w_I(n,q,0) & w_{II}(n,q,0)\\w_{i}^'(n,q,0) & w_{II}^'(n,q,0) \end{vmatrix}</math>= <math>\begin{vmatrix} 1 & 0\\0 & 1 \end{vmatrix}</math> 郎斯基行列式: <math>W[w_I,w_{II}]=1</math> <math> w_I(a,q,z+\pi)=w_I(a,q,\pi)*w_I(a,q,z)+w_I^'(a,q,\pi)*w_{II}(a,q,z) </math> <math> w_I(a,q,z-\pi)=w_I(a,q,\pi)*w_I(a,q,z)-w_I^'(a,q,\pi)*w_{II}(a,q,z) </math> <math> w_{II}(a,q,z+\pi)=w_{II}(a,q,\pi)*w_{II}(a,q,z)+w_{II}^'(a,q,\pi)*w_{II}(a,q,z) </math> <math> w_{II}(a,q,z-\pi)=w_{II}(a,q,\pi)*w_{II}(a,q,z)-w_I^'(a,q,\pi)*w_{II}(a,q,z) </math> <math> w_I(-z)=w_I(z) </math> <math> w_{II}(-z)=-w_{II}(z) </math> <math> </math> <math> </math> <math> </math> <math> </math> ==特例== * <math> CE(a,0,z)=cos(az) </math> * <math> SE(a,0,z)=sin(az) </math> * <math> MathieuA(1,0)=1 </math> * <math> MathieuA(a,0)=a^2 </math> * <math> MathieuB(a,0)=a^2 </math> * <math> MathieuFloquet(a,0,z)=exp(I*sqrt(a)*z) </math> * <math > </math> ==夫洛开解== [[File:Mathieu Floquet.gif|thumb|Mathieu Floquet]] 马丟函数中,如果<math>f(x)</math> 是一个周期为<math>\omega</math>的解,并满足下列条件 <math>f(x+\omega)=\sigma*f(x)</math>,其中<math>\sigma</math>与x 无关,则此解称为夫洛开解。 ;级数展开 <math>MF(1, 1, z) = {.7992-.5734*I+(-.9134+.6553*I)*z+(.3996-.2867*I)*z^2+(-.1523+.1092*I)*z^3+(-.2331+.1673*I)*z^4+O(z^5)} </math> <math> MF(1, 2, z) = {.7643-.4526*I+(-1.167+.6910*I)*z+(1.146-.6789*I)*z^2+(-.5835+.3455*I)*z^3+(-.2229+.1320*I)*z^4+O(z^5)} </math> <math> MF(1, 3, z) = {.6841-.3703*I+(-1.318+.7135*I)*z+(1.710-.9258*I)*z^2+(-1.098+.5946*I)*z^3+(0.2851e-1-0.1543e-1*I)*z^4+O(z^5)} </math> ==参考文献== <references/> *王竹溪 郭敦仁 《特殊函数概论》 第十二章 马丟函数 北京大学出版社 2000 *Frank J Oliver NIST Handbook of Mathematical Functions,Cambridge University PRESS, 2010 [[Category:常微分方程]] [[Category:特殊函数]]
该页面使用的模板:
Template:Lang-fr
(
查看源代码
)
Template:Tsl
(
查看源代码
)
返回
马丢函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息