查看“︁非规范博欣内斯克方程”︁的源代码
←
非规范博欣内斯克方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''非规范博欣内斯克方程'''(Unnormalized Boussinesq equation)是一个非线性偏微分方程:<ref>Andrei D. Polyanin,Valentin F. Zaitsev, HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, SECOND EDITION p990 CRC PRESS</ref> <math>u_{tt}-\alpha*(u*u_{x})_{x}-\beta*u_{xxxx}=0 </math> ==解析解== :<math> u(x, t) = _C5^2/(_C4^2*\alpha)-12*\beta*_C4^2*WeierstrassP(_C3+_C4*x+_C5*t, _C2, _C1)/\alpha </math> :<math> u(x, t) = -(-_C3^2+4*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*csch(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = -(-_C3^2+4*\beta*_C2^4)/(\alpha*_C2^2)+12*\beta*_C2^2*sech(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = -(-_C3^2+8*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*cot(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = -(-_C3^2+8*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*tan(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = (_C3^2+4*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*csc(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = (_C3^2+4*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*sec(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = (_C3^2+8*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*coth(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = (_C3^2+8*\beta*_C2^4)/(\alpha*_C2^2)-12*\beta*_C2^2*tanh(_C1+_C2*x+_C3*t)^2/\alpha </math> :<math> u(x, t) = (-8*\beta*_C3^4+_C4^2+4*\beta*_C3^4*_C1^2)/(\alpha*_C3^2)+12*\beta*_C3^2*JacobiDN(_C2+_C3*x+_C4*t, _C1)^2/\alpha </math> :<math> u(x, t) = (-8*\beta*_C3^4+_C4^2+4*\beta*_C3^4*_C1^2)/(\alpha*_C3^2)-12*\beta*_C3^2*(-1+_C1^2)*JacobiND(_C2+_C3*x+_C4*t, _C1)^2/\alpha </math> :<math> u(x, t) = (4*\beta*_C3^4*_C1^2+4*\beta*_C3^4+_C4^2)/(\alpha*_C3^2)-12*\beta*_C3^2*JacobiNS(_C2+_C3*x+_C4*t, _C1)^2/\alpha </math> :<math> u(x, t) = (4*\beta*_C3^4*_C1^2+4*\beta*_C3^4+_C4^2)/(\alpha*_C3^2)-12*\beta*_C3^2*_C1^2*JacobiSN(_C2+_C3*x+_C4*t, _C1)^2/\alpha </math> :<math> u(x, t) = -(8*\beta*_C3^4*_C1^2-_C4^2-4*\beta*_C3^4)/(\alpha*_C3^2)+12*\beta*_C3^2*_C1^2*JacobiCN(_C2+_C3*x+_C4*t, _C1)^2/\alpha </math> :<math> u(x, t) = -(8*\beta*_C3^4*_C1^2-_C4^2-4*\beta*_C3^4)/(\alpha*_C3^2)+12*\beta*_C3^2*(-1+_C1^2)*JacobiNC(_C2+_C3*x+_C4*t, _C1)^2/\alpha </math> ==行波图== {| |[[File:Unnormalized Boussinesq equation traveling wave plot 1.gif|thumb|]] |[[File:Unnormalized Boussinesq equation traveling wave plot 2.gif|thumb|]] |[[File:Unnormalized Boussinesq equation traveling wave plot 3.gif|thumb|]] |[[File:Unnormalized Boussinesq equation traveling wave plot 4.gif|thumb|]] |} {| |[[File:Unnormalized Boussinesq equation traveling wave plot 5.gif|thumb|]] |[[File:Unnormalized Boussinesq equation traveling wave plot 6.gif|thumb|]] |[[File:Unnormalized Boussinesq equation traveling wave plot 7.gif|thumb|]] |[[File:Unnormalized Boussinesq equation traveling wave plot 8.gif|thumb|]] |} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]]
该页面使用的模板:
Template:非线性偏微分方程
(
查看源代码
)
返回
非规范博欣内斯克方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息