查看“︁霍赫洛夫-沯波咯慈卡娅方程”︁的源代码
←
霍赫洛夫-沯波咯慈卡娅方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Kze 1.gif|thumb|Khokhlov-Zabolotskaya equation]] [[File:Kze 2.gif|thumb|Khokhlov-Zabolotskaya equation]] '''霍赫洛夫-沯波咯慈卡娅方程'''( Khokhlov--Zabolotskaya equation)是一个非线性偏微分方程<ref>Kodama, Y. and Gibbons, J., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. Lett. A,Vol. 135, No. 3, pp. 167–170, 1989.</ref><ref>Anna Rozanova-Pierrat Mathematical analysis of Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation,2006</ref>: <math>u_{xx}+[(\alpha*u+\beta)*u_{y}]_{y}=0</math> ==解析解== 霍赫洛夫-沯波咯慈卡娅方程有行波解: :p[2] := 1.32+1.4934776966447732662*(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^1.2 :p[3] := 1.32+1.4934776966447732662*(.2707963267948966192-1.4974545260150964159*x^1.2-1.*C[2]^1.2*y^1.2)^1.2 :p[7] := 1.32+1.4934776966447732662((55.009468881881296225-14.965237496723309046*I)*sqrt(1.-. :66321499013806706114*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-(.38969456396968710805*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-.66321499013806706114*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+(.38969456396968710805*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((.84629952125971224961+.23023442302651244686*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), .86217948717948717949-.50660293316059324046*I)/sqrt(3000.*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4-6725.*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+5070.))^1.2 :p[8] := 1.32+1.4934776966447732662*(-(34.214441730088728277*I)*sqrt(1.+2.1356058039711429821*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-2.2476058039711429821*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((1.4613712067681992557*I)*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), 1.0258869993454412308*I)/sqrt(3000.*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4+70.*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-625.))^1.2 :p[9] := 1.32+1.4934776966447732662*((38.347855408516105018-11.263642905975212858*I)*sqrt(1.-1.3164251207729468599*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-(.84634523908200302082*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-1.3164251207729468599*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+(.84634523908200302082*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((1.2003002147146243158+.35255564762321759608*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), .84115756322748992840-.54079011994043611908*I)/sqrt(5070.*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4-5450.*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+2070.))^1.2 p[10] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*csc(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2 :p[11] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*sec(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2 :p[12] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*sech(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2 : : : : : : {| |[[File:Khokhlov-Zabolotskaya equation traveling wave plot10.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot12.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot13.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot14.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |} {| |[[File:Khokhlov-Zabolotskaya equation traveling wave plot15.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot18.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot19.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot2.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |} {| |[[File:Khokhlov-Zabolotskaya equation traveling wave plot3.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot7.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot8.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] |[[File:Khokhlov-Zabolotskaya equation traveling wave plot9.gif|thumb|Khokhlov-Zabolotskaya equation traveling wave plot]] | | |} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]]
该页面使用的模板:
Template:非线性偏微分方程
(
查看源代码
)
返回
霍赫洛夫-沯波咯慈卡娅方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息