查看“︁雞爪定理”︁的源代码
←
雞爪定理
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[欧几里得几何|歐氏幾何]]中,'''雞爪定理'''<ref>{{cite book|title = 鸡爪定理|author = 金磊 |publisher = [[哈尔滨工业大学出版社]]|year = 2020 |isbn = 9787560384245 |series = 《數學中的小問題大定理》叢書(第六輯)}}</ref>(或'''內心/旁心引理''',{{lang-en|incenter/excenter lemma}})描述[[三角形]]的[[頂點 (幾何)|頂點]]、[[內心]]、[[旁心]]、[[外接圓]]的位置關係。其斷言,三角形某頂點<math>B</math>所對的旁心<math>I_B</math>、另兩個頂點<math>A</math>、<math>C</math>、內心<math>I</math>[[四點共圓]],且其[[圓心]](<math>II_B</math>中點)位於三角形的外接圓<math>\odot ABC</math>上。此定理的構形常於[[數學競賽|奧數]]幾何題出現。<ref name ="egmo">{{cite book|url = https://www.google.co.uk/books/edition/Euclidean_Geometry_in_Mathematical_Olymp/47UaDAAAQBAJ?hl=en&gbpv=1&pg=PA9&printsec=frontcover|title = Euclidean Geometry in Mathematical Olympiads|trans-title = 奧數歐氏幾何|author = Evan Chen|isbn = 9780883858394|publisher = [[Mathematical Association of America]]|year = 2016|page = 9–10|quote = This configuration shows up very often in olympiad geometry, so recognize it when it appears!|language = en|access-date = 2021-12-12|archive-date = 2021-12-15|archive-url = https://web.archive.org/web/20211215193544/https://www.google.co.uk/books/edition/Euclidean_Geometry_in_Mathematical_Olymp/47UaDAAAQBAJ?hl=en&gbpv=1&pg=PA9&printsec=frontcover|dead-url = no}}</ref> == 敍述 == [[File:Trillium theorem.svg|thumb|upright=1.2|雞爪定理:三條紅色線段等長]] 設<math>\triangle ABC</math>為[[任意三角形]],<math>I</math>為其[[內心]],<math>\angle ABC</math>的[[角平分線]]<math>BI</math>交[[外接圓]]<math>\odot ABC</math>於<math>D</math>。定理斷言,<math>D</math>到<math>A, C, I</math>三點等远,即<math>DA = DC = DI</math>。 等價的說法有: *過<math>A, C, I</math>三點的圓,圓心位於<math>D</math>。這尤其說明該圓的圓心在於原三角形的外接圓上。<ref>{{citation | last = Morris | first = Richard | issue = 2 | journal = {{link-en|數學教師|The Mathematics Teacher|The Mathematics Teacher}} | jstor = 27951001 | pages = 63–71 | title = Circles through notable points of the triangle | trans-title = 過三角形特殊點的圓 | volume = 21 | year = 1928| doi = 10.5951/MT.21.2.0069 | language = en }}. 尤其見p. 65處關於諸圓<math>BIC, CIA, AIB</math>及圓心的討論。</ref><ref>{{citation|url=http://www.cut-the-knot.org/m/Geometry/OnePropertyOfCircleThroughIncenter.shtml|title=A Property of Circle Through the Incenter|trans-title=過內心的圓之某性質|work=[[Cut-the-Knot]]|author={{le|Alexander Bogomolny|Alexander Bogomolny|Bogomolny, Alexander}}|access-date=2016-01-26|language=en|archive-date=2021-12-12|archive-url=https://web.archive.org/web/20211212155653/http://www.cut-the-knot.org/m/Geometry/OnePropertyOfCircleThroughIncenter.shtml|dead-url=no}}.</ref> *諸三角形<math>AID, CID, ACD</math>皆為[[等腰三角形|等腰]],<math>D</math>為其頂角。 還有第四點<math>I_B</math>也到<math>D</math>等遠,就是<math>B</math>所對的[[旁心]]。在以<math>D</math>為圓心的圓上,<math>I_B</math>與<math>I</math>互為[[對徑點]],即<math>D</math>為<math>II_B</math>的[[中點]]。<ref name="approaching-2014-10-29-inscribed-angles" /><ref>{{citation|url=http://www.cut-the-knot.org/Curriculum/Geometry/InExCircum.shtml|title=Midpoints of the Lines Joining In- and Excenters|trans-title=內心與諸旁心所連線段之中點|work=[[Cut-the-Knot]]|first=Alexander|last=Bogomolny|access-date=2016-01-26|language=en|archive-date=2021-12-12|archive-url=https://web.archive.org/web/20211212155541/http://www.cut-the-knot.org/Curriculum/Geometry/InExCircum.shtml|dead-url=no}}.</ref> == 證明 == 由於同弧所對的[[圆周角]]相等,有 : <math>\angle IBA = \angle DCA, \quad \angle IBC = \angle DAC. </math> 又<math>BI</math>為角<math>B</math>的平分線,有 : <math> \angle DCA = \angle DAC,</math> 故<math>DA = DC </math>得證(等圓周角對等[[弦 (幾何)|弦]])。 最後計角有: : <math> \begin{align} \angle DIA = {} & 180^\circ - \angle AIB \\ = {} & \angle IAB + \angle IBA \\ = {} & \angle IAC + \angle DAC \\ = {} & \angle IAD. \\ \end{align} </math> 所以三角形<math>DIA</math>有兩底角相等,證畢<math>DA = DI</math>。 ==應用於求作三角形== 定理適用於解決以下問題:已知某三角形的一個頂點<math>B</math>、[[內心]]<math>I</math>和[[外心]]<math>O</math>,求作該三角形。作法如下: #以<math>O</math>為圓心,<math>OB</math>為半徑,作圓。此為三角形的外接圓。 #作直線<math>BI</math>,與外接圓交於(<math>B</math>以外的另一點)<math>D</math>。 #以<math>D</math>為圓心,<math>DI</math>為半徑作圓,定理保證所得的圓過另兩個頂點<math>A, C</math>。 #所以,該圓與外接圓的交點<math>A, C</math>即為所求。<ref>{{citation|title=Problems and Solutions in Euclidean Geometry|trans-title=歐氏幾何問題及解答|series=Dover Books on Mathematics|first1=M. N.|last1=Aref|first2=William|last2=Wernick|publisher=Dover Publications, Inc.|year=1968|isbn=9780486477206|at=3.3(i), p. 68|url=https://books.google.com/books?id=vAcU7jOFhG4C&pg=PA68|language=en|accessdate=2021-12-12|archive-date=2021-12-12|archive-url=https://web.archive.org/web/20211212165218/https://books.google.com/books?id=vAcU7jOFhG4C&pg=PA68|dead-url=no}}.</ref> 然而,並非在平面上任意取三點作為<math>B, I, O</math>皆有對應的三角形。若以上作法不能給出三角形,則問題可能出在<math>IB</math>與<math>\odot O</math>相切,也可能在於最後兩圓[[相切]]或[[外離]]。而且,若<math>B, I, O</math>三點無任何限制,則即使作法確實給出三角形,<math>I</math>亦不必為其內心,可能是旁心。該些情況下,不存在三角形以<math>B</math>為頂點,<math>I</math>為內心、<math>O</math>為外心。(對於固定的<math>B, O</math>兩點,若要存在此種三角形,則<math>I</math>必須位於以<math>B</math>為尖點關於<math>\odot O</math>作成的[[心臟線]]圍成的區域中。)<ref name="yiu">{{citation | last = Yiu | first = Paul | issue = 2 | journal = Journal for Geometry and Graphics | mr = 3088369 | pages = 171–183 | title = Conic construction of a triangle from its incenter, nine-point center, and a vertex | trans-title = 給定內心、九點圓心、一頂點,以圓錐曲線構作原三角形 | url = http://math.fau.edu/Yiu/j16h2yiu.pdf | volume = 16 | year = 2012 | language = en | accessdate = 2021-12-12 | archive-date = 2020-11-28 | archive-url = https://web.archive.org/web/20201128081834/http://math.fau.edu/Yiu/j16h2yiu.pdf | dead-url = no }}</ref> 其他構作三角形的問題,如給定頂點、內心、[[九點圓|九點圓心]],求作三角形,有部分情況可化歸為前述問題解決,但一般而言無法[[尺規作圖|尺規作出]]。<ref name="yiu"/> == 命名 == 本定理有許多不同的名稱。「雞爪定理」得名自<math>DA, DI, DC</math>諸線段組成的幾何圖形。同樣,俄文稱為{{lang|rus|лемма о трезубце}}<ref name="rkarasev">{{cite book |title = Задачи для школьного математического кружка |trans-title = 數學興趣小組題目 |author1 = Р. Н. Карасёв |author2 = В. Л. Дольников |author3 = И. И. Богданов |author4 = А. В. Акопян |pages = 4 |location = Problem 1.2 |url = http://www.rkarasev.ru/common/upload/taskprob.pdf |language = ru |access-date = 2021-12-12 |archive-date = 2021-12-12 |archive-url = https://web.archive.org/web/20211212155509/http://www.rkarasev.ru/common/upload/taskprob.pdf |dead-url = no }}</ref><!-- Triangle ABC is inscribed in circle S. I is the center of inscribed circle of the triangle ABC. The line AI intersects S second time in the point D. Prove that DB = DC = DI. --><ref name="approaching-2014-10-29-inscribed-angles">{{cite web |url = http://math.mosolymp.ru/upload/files/2015/aesc/approaching-2014-10-29-inscribed-angles.pdf |publisher = СУНЦ МГУ им. М. В. Ломоносова - школа им. А.Н. Колмогорова |title = 6. Лемма о трезубце |trans-title = 6. 三叉引理 |date = 2014-10-29 |language = ru |access-date = 2021-12-12 |archive-date = 2021-12-12 |archive-url = https://web.archive.org/web/20211212155523/https://math.mosolymp.ru/upload/files/2015/aesc/approaching-2014-10-29-inscribed-angles.pdf |dead-url = no }}</ref>,謂[[三叉]]引理,或{{lang|rus|теорема трилистника}}<ref name="9pointcircle">{{cite journal |url = http://www.geometry.ru/persons/kushnir/9pointcircle.pdf |title = Это открытие - золотой ключ Леонарда Эйлера |trans-title = 這個發現——萊昂哈德·歐拉的金鑰 |location = Ф7 (Теорема трилистника), p.34;證明見p.36 |author = И. А. Кушнир |access-date = 2021-12-12 |archive-date = 2021-12-12 |archive-url = https://web.archive.org/web/20211212155516/https://www.geometry.ru/persons/kushnir/9pointcircle.pdf |dead-url = no }}</ref>,謂[[三葉草]]定理。英文又稱{{lang|en|theorem of trillium}}「[[延齡草]]定理」,亦是以某種三葉植物命名。 定理亦有其他名稱並非來自該形狀,如「內心/旁心引理」({{lang|en|the incenter/excenter lemma}})。<ref name ="egmo"/> == 參考文獻 == {{reflist|30em}} [[Category:三角形几何]] [[Category:幾何定理]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
雞爪定理
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息