查看“︁隧道磁阻”︁的源代码
←
隧道磁阻
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Magnetic_Tunnel_Junction.svg|右|缩略图|磁性隧道结示意图]] '''隧道磁阻'''({{lang-en|TMR, Tunnel Magnetoresistance}}),又稱'''穿隧磁阻''',是发生在'''磁隧道结'''({{lang|en|MTJ, Magnetic Tunnel Junction}})中的[[磁阻效应]],由一个薄[[絕緣體|绝缘体]]及被其隔开的两个[[铁磁性|铁磁体]]组成的组件。绝缘层足够薄(通常为几[[纳米]])的情况下,[[电子]]可以从一个铁磁体[[量子穿隧效應|隧穿]]过去另一边。由于这个过程在古典物理学中不可能实现的,所以隧道磁阻是一种严格的[[量子力学]]现象。 磁性隧道结通过[[薄膜]]技术进行制造。工业规模上的薄膜沉积通过磁控[[溅射沉积]]完成;实验室规模通过[[分子束外延]]、[[脉冲激光沉积]]以及[[电子束物理气相沉积]]制备。隧道的结通过[[光刻|光刻法]]制备。 == 现象学的描述 == 铁磁薄膜的两个[[磁化強度|磁化]]方向可以通过外部[[磁場|磁场]]单独切换。相对于反平行方向,如果磁化方向平行,[[电子]]更可能隧穿过绝缘膜。因此,这种结可以在两种[[电阻]]状态之间切换,一种具有低电阻,而另一种具有非常高的电阻。 == 历史 == 1975年,法国雷恩大学的Michel Jullière通过[[铁|Fe]] /[[锗]]-[[氧]]/[[钴]]结在4.2 K时最初发现。阻值的相对变化在14%左右,并没有引起重视。<ref>{{Cite journal|title=Tunneling between ferromagnetic films|last=M. Julliere|journal=Phys. Lett.|issue=3|doi=10.1016/0375-9601(75)90174-7|year=1975|volume=54A|pages=225–6|bibcode=1975PhLA...54..225J}}</ref> 1991 年[[东北大学 (日本)|日本东北大学]]的宮崎照宣發現室溫下阻值變化為2.7%。後來在1994年,宮崎照宣在由[[无定形体|无定形]][[氧化铝]]绝缘体隔开的铁中测得18%的相对阻值变化,<ref>{{Cite journal|title=Giant magnetic tunneling effect in Fe/Al<sub>2</sub>O<sub>3</sub>/Fe junction|last=T. Miyazaki|last2=N. Tezuka|journal=J. Magn. Magn. Mater.|issue=3|doi=10.1016/0304-8853(95)90001-2|year=1995|volume=139|pages=L231–4|bibcode=1995JMMM..139L.231M}}</ref>而[[贾加迪什穆德拉|Jagadeesh Moodera]]在CoFe和Co电极结中测得11.8%。 <ref>{{Cite journal|title=Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions|last=J. S. Moodera|journal=Phys. Rev. Lett.|issue=16|doi=10.1103/PhysRevLett.74.3273|year=1995|volume=74|pages=3273–6|bibcode=1995PhRvL..74.3273M|pmid=10058155|display-authors=etal}}</ref>當時觀察到的最高相對變化是鋁氧化物絕緣體在室溫下測得的70%。 自 2000 年以来,[[晶体|结晶]][[氧化镁]](MgO)的隧道勢壘一直在開發之中。 2001年Butler和Mathon獨立做出理論預測,以[[铁]]为铁磁体,并以[[氧化镁|MgO]]为绝缘体,隧道磁阻可达百分之几千。 <ref name="ButlerPRB2001" /> <ref name="MathonPRB2001">{{Cite journal|title=Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction|last=J. Mathon|last2=A. Umerski|journal=Phys. Rev. B|issue=22|doi=10.1103/PhysRevB.63.220403|year=2001|volume=63|page=220403|bibcode=2001PhRvB..63v0403M}}</ref>同年,Bowen 等人首次報告基於MgO的磁性隧道結 [Fe/MgO/FeCo(001)]中表現出顯著的TMR現象。 <ref>{{Cite journal|title=Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001)|url=https://digital.csic.es/bitstream/10261/25685/1/Bowen%2c%20M.%20et%20al%20Appl.%20Phys.%20Lett._79_2001.pdf|last=M. Bowen|journal=Appl. Phys. Lett.|issue=11|doi=10.1063/1.1404125|year=2001|volume=79|page=1655|bibcode=2001ApPhL..79.1655B|display-authors=etal|access-date=2022-01-29|archive-date=2021-11-28|archive-url=https://web.archive.org/web/20211128135956/https://digital.csic.es/bitstream/10261/25685/1/Bowen%2c%20M.%20et%20al%20Appl.%20Phys.%20Lett._79_2001.pdf|dead-url=no}}</ref> 2004 年,Parkin和湯浅新治制造出室温下超过200%TMR的 Fe/MgO/Fe结。<ref name="YuasaNM2004">{{Cite journal|title=Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions|last=S Yuasa|last2=T Nagahama|journal=Nat. Mater.|issue=12|doi=10.1038/nmat1257|year=2004|volume=3|pages=868–871|bibcode=2004NatMa...3..868Y|pmid=15516927|last3=A Fukushima|last4=Y Suzuki|last5=K Ando}}</ref> <ref name="ParkinNM2004">{{Cite journal|title=Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers|last=S. S. P. Parkin|journal=Nat. Mater.|issue=12|doi=10.1038/nmat1256|year=2004|volume=3|pages=862–7|bibcode=2004NatMa...3..862P|pmid=15516928|display-authors=etal}}</ref> 2008年,日本東北大學的S. Ikeda, H. Ohno小組在CoFeB/MgO/CoFeB結中觀察到室溫下高達 604% 效果以及 4.2 K 下超過 1100% 的效果。 <ref name="IkedaAPL2008">{{Cite journal|title=Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature|last=S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura and H. Ohno|journal=Appl. Phys. Lett.|issue=8|doi=10.1063/1.2976435|year=2008|volume=93|page=082508|bibcode=2008ApPhL..93h2508I}}</ref> == 应用 == 现代[[硬盘|硬盘驱动器]]的读取头原理基于磁隧道结。TMR,或者说磁隧道结,也是新型的[[非揮發性記憶體|非挥发性存储器]][[磁阻式隨機存取記憶體|MRAM]]的前身。第一代的技术通过在每个位点上创建交叉磁场并在其上写入数据,但是这种方法的缩放只能限制在90-130 nm左右。 <ref name="white paper">Barry Hoberman [http://www.crocus-technology.com/pdf/BH%20GSA%20Article.pdf The Emergence of Practical MRAM] {{Webarchive|url=https://web.archive.org/web/20110427022729/http://www.crocus-technology.com/pdf/BH%20GSA%20Article.pdf|date=2011-04-27}}. Crocus Technologies</ref>目前正在开发两种第二代技术:热辅助开关(TAS) <ref name="white paper" />和[[自旋转移扭矩]]。磁性隧道结也用于传感应用。例如,TMR 传感器可以测量现代高精度[[风向标]]的角度。 == 物理解释 == [[File:TunnelSchema_TMR.svg|右|缩略图|磁化平行和反平行排列的两个电流模型]] 相对电阻变化或效应幅度定义为 : <math>\mathrm{TMR} := \frac{R_{\mathrm{ap}}-R_{\mathrm{p}}}{R_{\mathrm{p}}}</math> 其中<math>R_\mathrm{ap}</math>是反平行状态下的电阻,而<math>R_\mathrm{p}</math>是平行状态下的电阻。 Jullière 用铁磁电极[[自旋极化]]解释了 TMR 效应。自旋极化''P''由[[自旋]]相关的[[状态密度]](DOS) <math>\mathcal{D}</math>在[[费米能|费米能量]]中计算得到: <math>P = \frac{\mathcal{D}_\uparrow(E_\mathrm{F}) - \mathcal{D}_\downarrow(E_\mathrm{F})}{\mathcal{D}_\uparrow(E_\mathrm{F}) + \mathcal{D}_\downarrow(E_\mathrm{F})}</math> 自旋向上的电子是那些自旋方向平行于外部磁场的电子,而自旋向下的电子则是与外部磁场反平行排列的电子。现在由两个铁磁体 ''P <sub>1</sub>''和''P <sub>2</sub>''的自旋极化给出相对电阻变化: <math>\mathrm{TMR} = \frac{2 P_1 P_2}{1 - P_1 P_2}</math> 如果没有施加[[電壓|电压]]到结上,电子会以相等的速率在两个方向上隧穿。在偏置电压''U 下'',电子会优先隧穿到正极。假设在隧穿过程中自旋[[守恒定律|守恒]],电流可以用双电流模型来描述。取决于结的磁性状态,总电流分为两个部分电流,一个用于自旋向上电子,另一个用于自旋向下电子。 定义有两种可能的反平行状态。首先可以使用具有不同[[矯頑力|矫顽力的]]铁磁体(通过使用不同的材料或不同的薄膜厚度)。其次,一个铁磁体可以与[[反铁磁性|反铁磁体]]耦合(交换偏置)。在这种情况下,未耦合电极的磁化保持“自由”。 ''如果 P <sub>1</sub>''和''P <sub>2</sub>''等于 1,即如果兩個電極都具有 100% 自旋極化,則 TMR 變為無限大。在這種情況下,磁性隧道結變成了一個開關,在低電阻和無限電阻之間進行磁性切換。擁有這種能力的材料稱為鐵磁半金屬。它們傳導電子的能力是完全自旋極化的。理論預測有許多材料具有此屬性(例如CrO <sub>2</sub> ,以及各种Heusler合金),但实验确认其属性一直受到争论。然而,如果只考虑那些进入传输的电子,Bowen 等人测得La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>和SrTiO<sub>3</sub>之间的界面处高达 99.6%,<ref name="BowenJPCM2005"> {{Cite journal|title=Half-metallicity proven using fully spin-polarized tunnelling|last=Bowen|first=M|last2=Barthélémy|first2=A|date=2005-10-19|journal=Journal of Physics: Condensed Matter|issue=41|doi=10.1088/0953-8984/17/41/L02|volume=17|pages=L407–9|bibcode=2005JPCM...17L.407B|issn=0953-8984|last3=Bibes|first3=M|last4=Jacquet|first4=E|last5=Contour|first5=J P|last6=Fert|first6=A|last7=Wortmann|first7=D|last8=Blügel|first8=S}}</ref>自旋极化实际上相当于证明了该特性。 TMR 隨著溫度升高和偏置電壓升高而降低。兩者原則上都可以通過[[磁振子]]相互作用來理解,以及由於氧空位引起的局部狀態的隧穿(參見下文的對稱濾波部分)。 <ref name="SchleicherNC2014"> {{Cite journal|title=Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO|last=Schleicher|first=F.|last2=Halisdemir|first2=U.|date=2014-08-04|journal=Nature Communications|doi=10.1038/ncomms5547|volume=5|page=4547|bibcode=2014NatCo...5.4547S|issn=2041-1723|pmid=25088937|laydate=Sternitzky|last3=Lacour|first3=D.|last4=Gallart|first4=M.|last5=Boukari|first5=S.|last6=Schmerber|first6=G.|last7=Davesne|first7=V.|last8=Panissod|first8=P.|last9=Halley|first9=D.}} </ref> == 隧道屏障中的对称滤波 == 在引入外延[[氧化镁]](MgO)之前,非晶氧化鋁被用作MTJ的隧道勢壘,室溫TMR一般在百分之幾十的範圍內。 MgO屏障將 TMR 提高到數百個百分點。這種大幅增加反映了電極和勢壘電子結構的協同組合,這反過來又反映了結構有序結的實現。實際上,MgO過濾了具有特定對稱性的電子的隧道傳輸,這些電子在流經[[立方晶系|体心立方]]鐵基電極的電流內完全自旋極化。因此,在MTJ的電極磁化平行 (P) 狀態下,這種對稱的電子可以支配結電流。相反,在MTJ的反平行 (AP) 狀態下,該通道被阻塞,因此具有下一個最有利於傳輸的對稱性的電子主導結電流。由於這些電子相對於更大的勢壘高度隧穿,這導致相當大的TMR。 除了跨过基于MgO的MTJ 的这些大的 TMR 值之外, <ref name="IkedaAPL2008" />勢壘電子結構對隧穿自旋電子學的影響,已經通過設計出具有特定對稱性的電子的結來間接證實。這首先是通過檢查具有全自旋 (P=+1 <ref name="BowenJPCM2005" /> ) 和对称极化隧道的镧锶锰酸盐[[半金属 (自旋电子学)|半金属]]电极的电子如何穿过电偏置的 SrTiO <sub>3</sub>隧道势垒来实现的。 <ref name="BowenPRB2006">{{Cite journal|title=Observation of Fowler–Nordheim hole tunneling across an electron tunnel junction due to total symmetry filtering|url=http://juser.fz-juelich.de/search?p=id:%22PreJuSER-56062%22|last=Bowen|first=M.|last2=Barthélémy|first2=A.|date=April 2006|journal=Physical Review B|issue=14|doi=10.1103/PhysRevB.73.140408|volume=73|pages=140408|bibcode=2006PhRvB..73n0408B|issn=1098-0121|last3=Bellini|first3=V.|last4=Bibes|first4=M.|last5=Seneor|first5=P.|last6=Jacquet|first6=E.|last7=Contour|first7=J.-P.|last8=Dederichs|first8=P.|access-date=2022-01-29|archive-date=2022-01-29|archive-url=https://web.archive.org/web/20220129112438/https://juser.fz-juelich.de/search?p=id:%2522PreJuSER-56062%2522|dead-url=no}}</ref>后来也证明了在样品生长期间在结界面处插入适当的金属间隔物的更简单的实验发现<ref name="GreulletPRL2007"> {{Cite journal|title=Evidence of a Symmetry-Dependent Metallic Barrier in Fully Epitaxial MgO Based Magnetic Tunnel Junctions|url=https://semanticscholar.org/paper/310c6edc6f964c4c673115ef162fcb1244be421e|last=Greullet|first=F.|last2=Tiusan|first2=C.|date=November 2007|journal=Physical Review Letters|issue=18|doi=10.1103/PhysRevLett.99.187202|volume=99|page=187202|bibcode=2007PhRvL..99r7202G|issn=0031-9007|pmid=17995434|last3=Montaigne|first3=F.|last4=Hehn|first4=M.|last5=Halley|first5=D.|last6=Bengone|first6=O.|last7=Bowen|first7=M.|last8=Weber|first8=W.}}</ref> <ref name="YuasaPRL2009"> {{Cite journal|title=Spin-dependent tunneling in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions with an ultrathin Cr(001) spacer layer|last=Matsumoto|first=Rie|last2=Fukushima|first2=Akio|date=2009|journal=Physical Review B|issue=17|doi=10.1103/PhysRevB.79.174436|volume=79|pages=174436|bibcode=2009PhRvB..79q4436M|last3=Yakushiji|first3=Kay|last4=Nishioka|first4=Shingo|last5=Nagahama|first5=Taro|last6=Katayama|first6=Toshikazu|last7=Suzuki|first7=Yoshishige|last8=Ando|first8=Koji|last9=Yuasa|first9=Shinji}}</ref> 。 虽然在 2001 年首次提出的理论<ref name="ButlerPRB2001">{{Cite journal|title=Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches|url=https://zenodo.org/record/1233741|last=W. H. Butler|last2=X.-G. Zhang|journal=Phys. Rev. B|issue=5|doi=10.1103/PhysRevB.63.054416|year=2001|volume=63|page=054416|bibcode=2001PhRvB..63e4416B|last3=T. C. Schulthess|last4=J. M. MacLaren|access-date=2022-01-29|archive-date=2022-01-29|archive-url=https://web.archive.org/web/20220129112130/https://zenodo.org/record/1233741|dead-url=no}}<cite class="citation journal cs1" data-ve-ignore="true" id="CITEREFW._H._ButlerX.-G._ZhangT._C._SchulthessJ._M._MacLaren2001">W. H. Butler; X.-G. Zhang; T. C. Schulthess & J. M. MacLaren (2001). [https://zenodo.org/record/1233741 "Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches"] {{Wayback|url=https://zenodo.org/record/1233741 |date=20220129112130 }}. ''Phys. Rev. B''. '''63''' (5): 054416. [[Bibcode]]:[https://ui.adsabs.harvard.edu/abs/2001PhRvB..63e4416B 2001PhRvB..63e4416B] {{Wayback|url=https://ui.adsabs.harvard.edu/abs/2001PhRvB..63e4416B |date=20220129090028 }}. [[DOI|doi]]:[[doi:10.1103/PhysRevB.63.054416|10.1103/PhysRevB.63.054416]].</cite></ref> <ref name="MathonPRB2001" />預測與 MTJ 的 P 狀態中的 4eV 勢壘高度和 MTJ 的 AP 狀態中的 12eV 相關的大 TMR 值,但實驗表明勢壘高度低至0.4eV。 <ref name="YuasaNM2004" />如果考虑到 MgO 隧道势垒中氧空位的局部状态,这一矛盾就会得到解决。跨越 MgO MTJ 的广泛的固态隧穿光谱实验在 2014 年<ref name="SchleicherNC2014" />揭示了電子在地面上的保留和氧空位的激發態,這取決於溫度,決定了給定對稱性電子的隧穿勢壘高度,以及從而製作出有效的 TMR 比率及其溫度依賴性。這種低勢壘高度進而能夠實現自旋轉移矩所需的高電流密度,這將在下文進行討論。 == 磁隧道结 (MTJ) 中的自旋转移矩 == [[自旋转移矩]]的影響已在 MTJ 中得到廣泛研究和應用,其中有一個隧道勢壘夾在一組兩個鐵磁電極之間,因此右電極有(自由)磁化,同時假設左電極(具有固定磁化)充當自旋偏振器。然後可以將其固定到[[磁阻式隨機存取記憶體|磁阻随机存取存储器]]设备中的某些选择晶体管,或连接到[[硬盘|硬盘驱动器]]应用中的前置放大器。 線性響應的電壓驅動的自旋轉移轉矩矢量可以從轉矩算子的期望值計算得到: <math> \mathbf{T} = \mathrm{Tr}[\hat{\mathbf{T}} \hat{\rho}_\mathrm{neq}] </math> 其中<math> \hat{\rho}_\mathrm{neq} </math>是[[规范场论|稳态输运的规范不变]]非平衡[[密度矩陣|密度矩阵]],在零温度极限下,以及在线性响应状态下, <ref>{{Cite journal|title=Spin-Orbit Coupling Induced Spin-Transfer Torque and Current Polarization in Topological-Insulator/Ferromagnet Vertical Heterostructures|url=|last=Mahfouzi|first=F.|last2=Nagaosa|first2=N.|journal=Phys. Rev. Lett.|issue=16|doi=10.1103/PhysRevLett.109.166602|year=2012|volume=109|pages=166602 See Eq. 13|arxiv=1202.6602|bibcode=2012PhRvL.109p6602M|pmid=23215105|last3=Nikolić|first3=B.K.}}</ref>扭矩算子<math> \hat{\mathbf{T}} </math>从自旋算子的时间导数可以得到: <math> \hat{\mathbf{T}} = \frac{d\hat{\mathbf{S}}}{dt}= -\frac{i}{\hbar}\left[\frac{\hbar}{2}\boldsymbol{\sigma},\hat{H}\right] </math> 使用一维紧束缚哈密顿量的一般形式: <math> \hat{H}=\hat{H}_0 - \Delta (\boldsymbol{\sigma} \cdot \mathbf{m})/2 </math> 其中總磁化強度(作為宏自旋)沿著單位矢量<math> \mathbf{m}</math>和涉及任意经典向量的泡利矩阵性质<math> \mathbf{p},\mathbf{q} </math>, 由 <math> (\boldsymbol{\sigma} \cdot \mathbf{p})(\boldsymbol{\sigma} \cdot \mathbf{q}) = \mathbf{p} \cdot \mathbf{q} + i(\mathbf{p}\times\mathbf{q})\cdot \boldsymbol{\sigma} </math> <math> (\boldsymbol{\sigma} \cdot \mathbf{p}) \boldsymbol{\sigma} = \mathbf{p} + i \boldsymbol{\sigma} \times \mathbf{p} </math> <math> \boldsymbol{\sigma} (\boldsymbol{\sigma} \cdot \mathbf{q}) = \mathbf{q} + i \mathbf{q} \times \boldsymbol{\sigma} </math> 可以获得一个解析表达式<math> \hat{\mathbf{T}} </math> (可以使用緊湊形式表示<math> \Delta, \mathbf{m} </math> ,以及泡利自旋矩陣的向量<math> \boldsymbol{\sigma}=(\sigma_x,\sigma_y,\sigma_z) </math> )。 一般 MTJ 中的自旋轉移力矩矢量有兩個分量:平行分量和垂直分量: 一个平行分量: <math> T_{\parallel}=\sqrt{T_x^2+T_z^2} </math> 和一个垂直分量: <math> T_{\perp}=T_y </math> 在對稱 MTJ(由具有相同幾何形狀和交換分裂的電極製成)中,自旋轉移矩矢量只有一個有效分量,因為垂直分量消失了: <math> T_{\perp} \equiv 0 </math> . <ref>[S.-C. Oh ''et. al.'', ''Bias-voltage dependence of perpendicular spin-transfer torque in a symmetric MgO-based magnetic tunnel junctions'', Nature Phys. '''5''', 898 (2009). [http://www.nature.com/nphys/journal/v5/n12/abs/nphys1427.html [PDF]] {{Wayback|url=http://www.nature.com/nphys/journal/v5/n12/abs/nphys1427.html |date=20161004171927 }}</ref> 因此,只有<math> T_{\parallel} </math>对比<math> \theta </math>需要在正確電極的位置繪製以表徵對稱 MTJ 中的隧道效應,使其可以用於工業規模的生產和表徵。 注意:在這些計算中,有源區域(需要計算延遲格林函數)應由隧道勢壘 + 有限厚度的右側鐵磁層組成(如在實際設備中)。活性區域連接到左鐵磁電極(建模為具有非零[[塞曼效应|塞曼分裂的]]半無限緊束縛鏈)和右 N 電極(沒有任何塞曼分裂的半無限緊束縛鏈),由相應的自能項。 == 理论与实验的差异 == 已经可以预测<ref>{{Cite journal|title=Gigantic tunneling magnetoresistance in magnetic Weyl semimetal tunnel junctions|url=https://journals.aps.org/prb/pdf/10.1103/PhysRevB.104.L041401|last=de Sousa|first=D. J. P.|last2=Ascencio|first2=C. O.|date=2021-07-01|journal=Physical Review B|issue=4|doi=10.1103/physrevb.104.l041401|volume=104|arxiv=2103.05501|issn=2469-9950|last3=Haney|first3=P. M.|last4=Wang|first4=J. P.|last5=Low|first5=Tony}}</ref>理論隧道的磁阻比。然而,已觀察到的最大僅為 604%。 <ref>{{Cite journal|title=Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeBMgOCoFeB pseudo-spin-valves annealed at high temperature|url=|last=Ikeda|first=S.|last2=Hayakawa|first2=J.|journal=Applied Physics Letters|issue=8|doi=10.1063/1.2976435|year=2008|volume=93|pages=39–42|bibcode=2008ApPhL..93h2508I|last3=Ashizawa|first3=Y.|last4=Lee|first4=Y.M.|last5=Miura|first5=K.|last6=Hasegawa|first6=H.|display-authors=etal}}</ref>一种猜想是[[晶粒边界|晶界]]可能會影響 MgO 勢壘的絕緣性能。然而,掩埋堆疊結構中的薄膜結構很難確定。<ref>{{Cite journal|title=Structure and morphology of thin MgO films on Mo(001)|url=|last=Benedetti|first=S.|last2=Torelli|first2=P.|journal=Physical Review B|issue=19|doi=10.1103/PhysRevB.78.195411|year=2008|volume=78|pages=1–8|bibcode=2008PhRvB..78s5411B|last3=Valeri|first3=S.|last4=Benia|first4=H.M.|last5=Nilius|first5=N.|last6=Renaud|first6=G.}}</ref>晶界可以充當通過材料的短路傳導路徑,從而降低器件的電阻。最近,使用新的掃描透射電子顯微鏡技術,FeCoB/MgO/FeCoB MTJ 內的晶界已被原子分辨。這允許對真實薄膜中存在的結構單元進行[[密度泛函理論|第一原理密度泛函理论计算。]]這樣的計算表明,帶隙可以減少多達 45%。 <ref>{{Cite journal|title=Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices|url=|last=Bean|first=J.J.|last2=Saito|first2=M.|journal=Scientific Reports|issue=|doi=10.1038/srep45594|year=2017|volume=7|pages=1–9|bibcode=2017NatSR...745594B|pmc=5379487|pmid=28374755|last3=Fukami|first3=S.|last4=Sato|first4=H.|last5=Ikeda|first5=S.}}</ref> 除了晶界之外,硼間隙和氧空位等點缺陷都可能會顯著改變隧道磁阻。最近的理論計算表明,硼間隙會在帶隙中引入缺陷態,可能會進一步降低 TMR <ref>{{Cite journal|title=Stability of point defects near MgO grain boundaries in FeCoB/MgO/FeCoB magnetic tunnel junctions|url=https://eprints.whiterose.ac.uk/140416/1/main.pdf|last=Bean|first=J.J.|last2=McKenna|first2=K.P.|journal=Physical Review Materials|issue=12|doi=10.1103/PhysRevMaterials.2.125002|year=2018|volume=2|pages=125002|bibcode=2018PhRvM...2l5002B|access-date=2022-01-29|archive-date=2022-02-06|archive-url=https://web.archive.org/web/20220206181610/https://eprints.whiterose.ac.uk/140416/1/main.pdf|dead-url=no}}</ref>這些理論計算也得到了實驗證據的支持,實驗證據顯示了兩個不同系統之間 MgO 層中硼的性質以及如何TMR 是不同的。 <ref> {{Cite journal|title=Impact of boron diffusion at MgO grain boundaries on magneto-transport properties of MgO/CoFeB/W magnetic tunnel junctions|url=|last=Xu|first=X.D.|last2=Mukaiyama|first2=K.|journal=Acta Materialia|issue=|doi=10.1016/j.actamat.2018.09.028|year=2018|volume=161|pages=360–6|bibcode=2018AcMat.161..360X|last3=Kasai|first3=S.|last4=Ohkubo|first4=T.|last5=Hono|first5=K.}}</ref> == 相关 == * [[量子穿隧效應|量子隧道]] * [[磁阻效应|磁阻]] * [[巨磁阻效应|巨磁阻]](GMR) * [[自旋转移矩|自旋转移力矩]] == 参考 == {{Reflist}} [[Category:自旋电子学]] [[Category:物質內的電場和磁場]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:Webarchive
(
查看源代码
)
返回
隧道磁阻
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息