查看“︁阿依熱爾曼猜想”︁的源代码
←
阿依熱爾曼猜想
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''阿依熱爾曼猜想'''(Aizerman's conjecture)或'''阿依熱爾曼問題猜想'''(Aizerman problem)是[[非線性控制]]的猜想,認為一線性系統有非線性的回授,不過是在一個扇形的線性區間內,若線性系統在此扇形線性區間都穩定,則整個系統都會穩定。 阿依熱爾曼猜想在一維系統成立,在二維系統是全域穩定的充份必要條件,而針對維度大於3的情形,這個猜想已找到反證<ref>{{cite web |url=http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |title=Aizerman's and Kalman's conjectures and DF method |accessdate=2019-04-04 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304112151/http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |dead-url=no }}</ref><ref name=JCSSI2011/>,不過後來因此推導出(有效的)[[非線性控制#絕對穩定性問題|非線性控制全域穩定性準則]]。 ==阿依熱爾曼猜想的數學描述== 考慮一個系統,其中包括一個純量非線性的函數 :<math> \frac{dx}{dt}=Px+qf(e),\quad e=r^*x \quad x\in\mathbb R^n, </math> :其中P是常數n×n矩陣、q和r是常數n維向量、∗ 是轉置算子、f(e)是純量函數,且 f(0)=0。假設非線性函數f是有扇型區間的上下限,也就是存在實數<math> k_1 </math>及<math> k_2 </math>,滿足<math> k_1 <k_2 </math>,且函數<math> f </math>滿足 :<math> k_1 < \frac{f(e)}{e}< k_2, \quad \forall \; e \neq 0. </math> 阿依熱爾曼猜想就是指此系統在全域穩定(有唯一穩定點,而且是全域[[吸引子]])若所有在f(e)=ke, k ∈(k1,k2)下的線性系統都是漸近穩定。 存在阿依熱爾曼猜想的反例,非線性函數在線性穩定的範圍內,且系統除了唯一的穩定平衡點外,還有穩定的週期解—[[隱蔽振盪]]。<ref name=JCSSI2011>{{cite journal | author1 = Bragin V.O. | author2 = Vagaitsev V.I. | author3 = Kuznetsov N.V. | author4 = Leonov G.A. | year = 2011 | title = Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits | journal = Journal of Computer and Systems Sciences International | volume = 50 | number = 5 | pages = 511–543 | url = http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf | doi = 10.1134/S106423071104006X | access-date = 2019-04-04 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304045017/http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf | dead-url = no }}</ref><ref name=2011-DAN-Kalman>{{cite journal | author1 = Leonov G.A. | author2 = Kuznetsov N.V. | year = 2011 | title = Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems | journal = Doklady Mathematics | volume = 84 | number = 1 | pages = 475–481 | url = http://www.math.spbu.ru/user/nk/PDF/2011-DAN-Absolute-stability-Aizerman-problem-Kalman-conjecture.pdf | doi = 10.1134/S1064562411040120 | access-date = 2019-04-04 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304053548/http://www.math.spbu.ru/user/nk/PDF/2011-DAN-Absolute-stability-Aizerman-problem-Kalman-conjecture.pdf | dead-url = no }}</ref><ref name=2011-IFAC-hidden-survey>{{cite journal | author1 = Leonov G.A. | author2 = Kuznetsov N.V. | year = 2011 | title = Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems | journal = IFAC Proceedings Volumes (IFAC-PapersOnline) | volume = 18 | number = 1 | pages = 2494–2505 | url = http://www.math.spbu.ru/user/nk/PDF/2011-IFAC-Hidden-oscillations-control-systems-Aizerman-problem-Kalman.pdf | doi = 10.3182/20110828-6-IT-1002.03315 | access-date = 2019-04-04 | archive-date = 2020-07-09 | archive-url = https://web.archive.org/web/20200709161140/https://www.math.spbu.ru/user/nk/PDF/2011-IFAC-Hidden-oscillations-control-systems-Aizerman-problem-Kalman.pdf | dead-url = no }}</ref><ref name=2011-IJBC-Hidden-attractors>{{cite journal |author1=Leonov G.A. |author2=Kuznetsov N.V. | year = 2013 | title = Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits | journal = International Journal of Bifurcation and Chaos | volume = 23 | issue = 1 | pages = art. no. 1330002| doi = 10.1142/S0218127413300024}} </ref> [[卡爾曼猜想]]是強化版本的阿依熱爾曼猜想,在非線性回授的部份要求回授的微分需在線性穩定區間內,結果也存在反例。 ==參考資料== {{reflist}} ==延伸閱讀== *{{cite journal | author = Atherton, D.P. | author2 = Siouris, G.M. | year = 1977 | title = Nonlinear Control Engineering | journal = Systems, Man and Cybernetics, IEEE Transactions on | volume = 7 | issue = 7 | pages = 567–568 | url = http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4309773 | accessdate = 2008-06-30 | doi = 10.1109/TSMC.1977.4309773 | archive-date = 2019-07-13 | archive-url = https://web.archive.org/web/20190713061129/https://ieeexplore.ieee.org/document/4309773/?arnumber=4309773 | dead-url = no }} ==外部連結== *{{cite web |url=http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |title=Counterexamples to Aizerman's and Kalman's conjectures and describing function method |accessdate=2019-04-04 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304112151/http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |dead-url=no }} [[Category:非線性控制]] [[Category:已證否的猜想]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
阿依熱爾曼猜想
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息