查看“︁镜像对称 (弦理论)”︁的源代码
←
镜像对称 (弦理论)
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[代数几何]]和[[理论物理]]中,'''镜像对称'''是指[[卡拉比-丘流形]]之间的一种特殊关系,即两种卡丘流形虽然在几何上差别很大,但是作为[[弦理论]]的[[额外维度]]时却是等价的。这样的一对流形被称为镜像流形。 镜像对称最早是由物理学家发现的。1990年左右,{{le|菲利普·坎德拉斯|Philip Candelas}}、齐妮娅·德·拉·奥萨(Xenia de la Ossa)、保罗·格林(Paul Green)和琳达·帕克斯(Linda Parks)发现它可以用于[[枚举几何]],因此激发了数学家对此的兴趣。枚举几何是研究几何问题解的数量的数学分支。坎德拉斯和他的合作者证明了镜像对称可用于计算卡丘流形上[[有理曲线]]的数目,从而解决了一个长期的难题。尽管镜像对称最初的方法是从物理出发的,数学上并不严格,它的许多数学预测已经被[[数学证明|严格证明]]了。 目前,镜像对称是[[纯数学]]中的热门话题,数学家正在物理直觉的基础上探索镜像对称的严格数学化表述。镜像对称也是进行[[弦论]]和[[量子场论]]计算的重要工具,这两者都是物理学家用来描述[[基本粒子]]的理论。镜像对称的数学表述主要有[[马克西姆·孔采维奇]]的[[同调镜像对称]],以及[[安德鲁·施特罗明格]]、[[丘成桐]]和{{le|埃里克·扎斯洛|Eric Zaslow}}的{{le|SYZ猜想|SYZ conjecture}}。 ==参见== * {{le|唐纳森–托马斯理论|Donaldson–Thomas theory}} * [[Wall-crossing]] ==注释== {{reflist|30em}} ==参考文献== {{refbegin|30em}} * {{cite book |editor1-first=Paul |editor1-last=Aspinwall |editor2-first=Tom |editor2-last=Bridgeland |editor3-first=Alastair |editor3-last=Craw |editor4-first=Michael |editor4-last=Douglas |editor5-first=Mark |editor5-last=Gross |editor6-first=Anton |editor6-last=Kapustin |editor7-first=Gregory |editor7-last=Moore |editor8-first=Graeme |editor8-last=Segal |editor9-first=Balázs |editor9-last=Szendröi |editor10-first=P.M.H. |editor10-last=Wilson |title=Dirichlet Branes and Mirror Symmetry |year=2009 |publisher=American Mathematical Society | isbn=978-0-8218-3848-8}} * {{cite journal |last=Candelas |first=Philip |last2=de la Ossa |first2=Xenia |last3=Green |first3=Paul |last4=Parks |first4=Linda |year=1991 |title=A pair of Calabi–Yau manifolds as an exactly soluble superconformal field theory |journal=Nuclear Physics B |volume=359 |issue=1 |pages=21–74 |doi=10.1016/0550-3213(91)90292-6 |bibcode = 1991NuPhB.359...21C }} * {{cite journal |last1=Candelas |first1=Philip |last2=Horowitz |first2=Gary |last3=Strominger |first3= Andrew |last4=Witten |first4=Edward |year=1985 |title=Vacuum configurations for superstrings |journal=Nuclear Physics B |volume=258 |issue= |pages=46–74|bibcode = 1985NuPhB.258...46C |doi=10.1016/0550-3213(85)90602-9 }} * {{cite journal |last1=Candelas |first1=Philip |last2=Lynker |first2=Monika |last3=Schimmrigk |first3=Rolf |year=1990 |title=Calabi–Yau manifolds in weighted <math>\mathbb{P}_4</math> |journal=Nuclear Physics B |volume=341 |issue=1 |pages=383–402 |doi=10.1016/0550-3213(90)90185-G|bibcode=1990NuPhB.341..383C }} * {{cite journal |last1=Dixon |first1=Lance |year=1988 |title=Some world-sheet properties of superstring compactifications, on orbifolds and otherwise |journal=ICTP Ser. Theoret. Phys. |volume=4 |pages=67–126 |isbn=978-9971-5-0452-6}} * {{cite journal |last1=Givental |first1=Alexander |year=1996 |title=Equivariant Gromov-Witten invariants |journal=International Mathematics Research Notices |volume=1996 |issue=13 |pages=613–663 |doi=10.1155/S1073792896000414}} * {{cite journal |last1=Givental |first1=Alexander |year=1998 |title=A mirror theorem for toric complete intersections |journal=Topological field theory, primitive forms and related topics |pages=141–175 |doi=10.1007/978-1-4612-0705-4_5|isbn=978-1-4612-6874-1 }} * {{cite book |last1=Greene |first1=Brian |title=The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory |year=2000 |publisher=Random House |isbn=978-0-9650888-0-0}} * {{cite journal |last=Greene |first=Brian |last2=Plesser |first2=Ronen |year=1990 |title=Duality in Calabi–Yau moduli space |journal=Nuclear Physics B |volume=338 |issue=1 |pages=15–37|bibcode=1990NuPhB.338...15G |doi=10.1016/0550-3213(90)90622-K }} * {{cite book |editor1-first=Kentaro |editor1-last=Hori |editor2-first=Sheldon |editor2-last=Katz |editor3-first=Albrecht |editor3-last=Klemm |editor4-first=Rahul |editor4-last=Pandharipande |editor5-first=Richard |editor5-last=Thomas |editor6-first=Cumrun |editor6-last=Vafa |editor7-first=Ravi |editor7-last=Vakil |editor8-first=Eric |editor8-last=Zaslow |title=Mirror Symmetry |year=2003 |publisher=American Mathematical Society |url=http://math.stanford.edu/~vakil/files/mirrorfinal.pdf |isbn=0-8218-2955-6 |deadurl=yes |archiveurl=https://web.archive.org/web/20060919020706/http://math.stanford.edu/~vakil/files/mirrorfinal.pdf |archivedate=2006-09-19 }} * {{cite arXiv |last1=Hori |first1=Kentaro |last2=Vafa |first2=Cumrun |eprint=hep-th/0002222 |title=Mirror Symmetry |year=2000}} * {{cite journal |last1=Intriligator |first1=Kenneth |last2=Seiberg |first2=Nathan |title=Mirror symmetry in three-dimensional gauge theories |url=https://archive.org/details/sim_physics-letters-b_1996-10-24_387_3/page/n74 |journal=Physics Letters B |year=1996 |volume=387 |issue=3 |pages=513–519 |doi=10.1016/0370-2693(96)01088-X|bibcode=1996PhLB..387..513I |arxiv = hep-th/9607207 }} * {{cite journal |last1=Kikkawa |first1=Keiji |last2=Yamasaki |first2=Masami |year=1984 |title=Casimir effects in superstring theories |journal=Physics Letters B |volume=149 |issue=4 |pages=357–360|bibcode = 1984PhLB..149..357K |doi = 10.1016/0370-2693(84)90423-4 }} * {{cite journal |last=Kontsevich |first=Maxim |date=1995a |publisher=Birkhäuser |doi=10.1007/978-1-4612-4264-2_12|chapter=Enumeration of Rational Curves Via Torus Actions |title=The Moduli Space of Curves |isbn=978-1-4612-8714-8 |page=335 }} * {{cite journal |last1=Kontsevich |first1=Maxim |year=1995b |title=Homological algebra of mirror symmetry |url=https://archive.org/details/arxiv-alg-geom9411018 |journal=Proceedings of the International Congress of Mathematicians |pages=120–139|bibcode=1994alg.geom.11018K |arxiv=alg-geom/9411018 }} * {{cite journal |last1=Lerche |first1=Wolfgang |last2=Vafa |first2=Cumrun |last3=Warner |first3=Nicholas |year=1989 |title=Chiral rings in <math>\mathcal{N} = 2</math> superconformal theories |journal=Nuclear Physics B |volume=324 |issue=2 |pages=427–474|bibcode = 1989NuPhB.324..427L |doi = 10.1016/0550-3213(89)90474-4 }} * {{cite journal |last1=Lian |first1=Bong |last2=Liu |first2=Kefeng |last3=Yau |first3=Shing-Tung |year=1997 |title=Mirror principle, I |journal=Asian Journal of Math |volume=1 |pages=729–763|bibcode=1997alg.geom.12011L |arxiv=alg-geom/9712011 }} * {{cite journal |last1=Lian |first1=Bong |last2=Liu |first2=Kefeng |last3=Yau |first3=Shing-Tung |year=1999a |title=Mirror principle, II |journal=Asian Journal of Math |volume=3 |pages=109–146|bibcode=1999math......5006L |arxiv=math/9905006 }} * {{cite journal |last1=Lian |first1=Bong |last2=Liu |first2=Kefeng |last3=Yau |first3=Shing-Tung |year=1999b |title=Mirror principle, III |journal=Asian Journal of Math |volume=3 |pages=771–800|bibcode=1999math.....12038L |arxiv=math/9912038 }} * {{cite journal |last1=Lian |first1=Bong |last2=Liu |first2=Kefeng |last3=Yau |first3=Shing-Tung |year=2000 |title=Mirror principle, IV |journal=Surveys in Differential Geometry |pages=475–496|bibcode=2000math......7104L |arxiv=math/0007104 }} * {{cite book |last1=Mac Lane |first1=Saunders |title=Categories for the Working Mathematician |year=1998 |isbn=978-0-387-98403-2}} * {{cite journal| author=Moore, Gregory | title=What is ... a Brane?| journal=Notices of the AMS| year=2005 | url=http://www.ams.org/notices/200502/what-is.pdf |format=PDF| accessdate=June 2013 |page=214| volume=52}} * {{cite journal |last1=Sakai |first1=Norisuke |last2=Senda |first2=Ikuo |year=1986 |title=Vacuum energies of string compactified on torus |journal=Progress of Theoretical Physics |volume=75 |issue=3 |pages=692–705|bibcode = 1986PThPh..75..692S |doi = 10.1143/PTP.75.692 }} * {{cite journal |last1=Strominger |first1=Andrew |last2=Yau |first2=Shing-Tung |last3=Zaslow |first3=Eric |year=1996 |title=Mirror symmetry is T-duality |journal=Nuclear Physics B |volume=479 |issue=1 |pages=243–259|arxiv = hep-th/9606040 |bibcode = 1996NuPhB.479..243S |doi = 10.1016/0550-3213(96)00434-8 }} * {{cite journal |last1=Vafa |first1=Cumrun |year=1992 |title=Topological mirrors and quantum rings |journal=Essays on mirror manifolds |pages=96–119|bibcode=1991hep.th...11017V |isbn=978-962-7670-01-8 |arxiv=hep-th/9111017 }} * {{cite book |last1=Wald |first1=Robert |title=General Relativity |url=https://archive.org/details/generalrelativit0000wald |year=1984 |publisher=University of Chicago Press |isbn=978-0-226-87033-5 }} * {{cite journal |last1=Witten |first1=Edward |year=1990 |title=On the structure of the topological phase of two-dimensional gravity |journal=Nuclear Physics B |volume=340 |issue=2–3 |pages=281–332|bibcode = 1990NuPhB.340..281W |doi = 10.1016/0550-3213(90)90449-N }} * {{cite journal |last1=Witten |first1=Edward |year=1992 |title=Mirror manifolds and topological field theory |journal=Essays on mirror manifolds |pages=121–160 |isbn=978-962-7670-01-8}} * {{Cite book| first1 = Shing-Tung | last1 = Yau | first2 = Steve | last2 = Nadis | year = 2010 | title = The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions | url = https://archive.org/details/shapeofinnerspac0000yaus | publisher = Basic Books | isbn = 978-0-465-02023-2 }} * {{Cite book| last1=Zaslow | first1=Eric | contribution=Mirror Symmetry | year=2008 | title=The Princeton Companion to Mathematics | url=https://archive.org/details/princetoncompani0000unse_i8p7 | editor-last=Gowers | editor-first=Timothy | isbn=978-0-691-11880-2 }} * {{cite book |last1=Zwiebach |first1=Barton |title=A First Course in String Theory |url=https://archive.org/details/firstcourseinstr0002edzwie |year=2009 |publisher=Cambridge University Press |isbn=978-0-521-88032-9}} {{refend}} ==扩展阅读== ===科普=== * {{Cite book| first1 = Shing-Tung | last1 = Yau | first2 = Steve | last2 = Nadis | year = 2010 | title = The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions | url = https://archive.org/details/shapeofinnerspac0000yaus | publisher = Basic Books | isbn = 978-0-465-02023-2 }} * {{cite arXiv |last=Zaslow |first=Eric |eprint=physics/0506153 |title=Physmatics |year=2005 }} * {{Cite book| last1=Zaslow | first1=Eric | contribution=Mirror Symmetry | year=2008 | title=The Princeton Companion to Mathematics | url=https://archive.org/details/princetoncompani0000unse_i8p7 | editor-last=Gowers | editor-first=Timothy | isbn=978-0-691-11880-2 }} ===教材=== * {{cite book |editor1-first=Paul |editor1-last=Aspinwall |editor2-first=Tom |editor2-last=Bridgeland |editor3-first=Alastair |editor3-last=Craw |editor4-first=Michael |editor4-last=Douglas |editor5-first=Mark |editor5-last=Gross |editor6-first=Anton |editor6-last=Kapustin |editor7-first=Gregory |editor7-last=Moore |editor8-first=Graeme |editor8-last=Segal |editor9-first=Balázs |editor9-last=Szendröi |editor10-first=P.M.H. |editor10-last=Wilson |title=Dirichlet Branes and Mirror Symmetry |year=2009 |publisher=American Mathematical Society | isbn=978-0-8218-3848-8}} * {{cite book |last1=Cox |first1=David |last2=Katz |first2=Sheldon |title=Mirror symmetry and algebraic geometry |url=https://archive.org/details/mirrorsymmetryal0000davi |year=1999 |publisher=American Mathematical Society |isbn=978-0-8218-2127-5}} * {{cite book |editor1-first=Kentaro |editor1-last=Hori |editor2-first=Sheldon |editor2-last=Katz |editor3-first=Albrecht |editor3-last=Klemm |editor4-first=Rahul |editor4-last=Pandharipande |editor5-first=Richard |editor5-last=Thomas |editor6-first=Cumrun |editor6-last=Vafa |editor7-first=Ravi |editor7-last=Vakil |editor8-first=Eric |editor8-last=Zaslow |title=Mirror Symmetry |year=2003 |publisher=American Mathematical Society |url=http://math.stanford.edu/~vakil/files/mirrorfinal.pdf |isbn=0-8218-2955-6 |deadurl=yes |archiveurl=https://web.archive.org/web/20060919020706/http://math.stanford.edu/~vakil/files/mirrorfinal.pdf |archivedate=2006-09-19 }} {{弦理论}} [[Category:代数几何]] [[Category:弦理论]]
该页面使用的模板:
Template:Cite arXiv
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Refbegin
(
查看源代码
)
Template:Refend
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:弦理论
(
查看源代码
)
返回
镜像对称 (弦理论)
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息