查看“︁连续q勒让德多项式”︁的源代码
←
连续q勒让德多项式
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''连续勒让德多项式'''是一个以[[基本超几何函数]]定义的[[正交多项式]]<ref>Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p475,Springer,2010</ref> <math>P_n(x|q)=\;_{4}\phi_3\left(\begin{matrix} q^{-n} & q^{n+1} & q^{1/4}e^{i\theta} & a^{1/4}e^{-i\theta} & \\ q & -q^{1/2} &-q \end{matrix} ; q,q \right)</math> ==极限关系== 令连续q勒让德多项式 q->1 得[[勒让德多项式]] <math> \lim_{q \to 1}P_{n}(x|q)=P_{n}(x)</math> ;验证5阶连续q勒让德多项式→勒让德多项式 <math> \lim_{q \to 1}P_{5}(x|q)=P_{5}(x)</math> 由定义, <math> P_{5}(x|q)=1+ \left( 1-{q}^{-5} \right) \left( 1-{q}^{-4} \right) \left( 1-{q}^ {-3} \right) \left( 1-{q}^{6} \right) \left( 1-{q}^{7} \right) \left( 1-{q}^{8} \right) \left( 1-\sqrt [4]{q} \left( x+i\sqrt {1-{x }^{2}} \right) \right) \left( 1-{q}^{5/4} \left( x+i\sqrt {1-{x}^{2} } \right) \right) \left( 1-{q}^{9/4} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{\frac {\sqrt [4]{q}}{x+i\sqrt {1-{x}^{2}} }} \right) \left( 1-{\frac {{q}^{5/4}}{x+i\sqrt {1-{x}^{2}}}} \right) \left( 1-{\frac {{q}^{9/4}}{x+i\sqrt {1-{x}^{2}}}} \right) { q}^{3} \left( 1-q \right) ^{-2} \left( 1-{q}^{2} \right) ^{-2} \left( 1-{q}^{3} \right) ^{-2} \left( 1+\sqrt {q} \right) ^{-1} \left( 1+{q}^ {3/2} \right) ^{-1} \left( 1+{q}^{5/2} \right) ^{-1} \left( 1+q \right) ^{-1} \left( 1+{q}^{2} \right) ^{-1} \left( 1+{q}^{3} \right) ^{-1}+ \left( 1-{q}^{-5} \right) \left( 1-{q}^{-4} \right) \left( 1-{q}^{-3} \right) \left( 1-{q}^{-2} \right) \left( 1-{q}^{6 } \right) \left( 1-{q}^{7} \right) \left( 1-{q}^{8} \right) \left( 1-{q}^{9} \right) \left( 1-\sqrt [4]{q} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{5/4} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{9/4} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{{\frac {13}{4}}} \left( x+i\sqrt {1-{ x}^{2}} \right) \right) \left( 1-{\frac {\sqrt [4]{q}}{x+i\sqrt {1-{ x}^{2}}}} \right) \left( 1-{\frac {{q}^{5/4}}{x+i\sqrt {1-{x}^{2}}}} \right) \left( 1-{\frac {{q}^{9/4}}{x+i\sqrt {1-{x}^{2}}}} \right) \left( 1-{q}^{{\frac {13}{4}}} \left( x+i\sqrt {1-{x}^{2}} \right) ^{ -1} \right) {q}^{4} \left( 1-q \right) ^{-2} \left( 1-{q}^{2} \right) ^{-2} \left( 1-{q}^{3} \right) ^{-2} \left( 1-{q}^{4} \right) ^{-2} \left( 1+\sqrt {q} \right) ^{-1} \left( 1+{q}^{3/2} \right) ^{-1} \left( 1+{q}^{5/2} \right) ^{-1} \left( 1+{q}^{7/2} \right) ^{-1} \left( 1+q \right) ^{-1} \left( 1+{q}^{2} \right) ^{-1} \left( 1+{q}^ {3} \right) ^{-1} \left( 1+{q}^{4} \right) ^{-1}+ \left( 1-{q}^{-5} \right) \left( 1-{q}^{-4} \right) \left( 1-{q}^{-3} \right) \left( 1-{q}^{-2} \right) \left( 1-{q}^{-1} \right) \left( 1-{q}^{6 } \right) \left( 1-{q}^{7} \right) \left( 1-{q}^{8} \right) \left( 1-{q}^{9} \right) \left( 1-{q}^{10} \right) \left( 1-\sqrt [4]{q} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{5/4} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{9/4} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{{\frac { 13}{4}}} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{{ \frac {17}{4}}} \left( x+i\sqrt {1-{x}^{2}} \right) \right) \left( 1 -{\frac {\sqrt [4]{q}}{x+i\sqrt {1-{x}^{2}}}} \right) \left( 1-{ \frac {{q}^{5/4}}{x+i\sqrt {1-{x}^{2}}}} \right) \left( 1-{\frac {{q} ^{9/4}}{x+i\sqrt {1-{x}^{2}}}} \right) \left( 1-{q}^{{\frac {13}{4}}} \left( x+i\sqrt {1-{x}^{2}} \right) ^{-1} \right) \left( 1-{q}^{{ \frac {17}{4}}} \left( x+i\sqrt {1-{x}^{2}} \right) ^{-1} \right) {q}^ {5} \left( 1-q \right) ^{-2} \left( 1-{q}^{2} \right) ^{-2} \left( 1-{ q}^{3} \right) ^{-2} \left( 1-{q}^{4} \right) ^{-2} \left( 1-{q}^{5} \right) ^{-2} \left( 1+\sqrt {q} \right) ^{-1} \left( 1+{q}^{3/2} \right) ^{-1} \left( 1+{q}^{5/2} \right) ^{-1} \left( 1+{q}^{7/2} \right) ^{-1} \left( 1+{q}^{9/2} \right) ^{-1} \left( 1+q \right) ^{- 1} \left( 1+{q}^{2} \right) ^{-1} \left( 1+{q}^{3} \right) ^{-1} \left( 1+{q}^{4} \right) ^{-1} \left( 1+{q}^{5} \right) ^{-1}-{\frac {{q}^{5/4}}{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) \left( x+i\sqrt {1-{x}^{2}} \right) }}-{\frac {{q }^{5/4} \left( x+i\sqrt {1-{x}^{2}} \right) }{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}+{q}^{{\frac {29}{4} }} \left( 1-q \right) ^{-2} \left( 1+\sqrt {q} \right) ^{-1} \left( 1+ q \right) ^{-1} \left( x+i\sqrt {1-{x}^{2}} \right) ^{-1}+{q}^{{\frac {29}{4}}} \left( x+i\sqrt {1-{x}^{2}} \right) \left( 1-q \right) ^{-2 } \left( 1+\sqrt {q} \right) ^{-1} \left( 1+q \right) ^{-1}+{q}^{-{ \frac {15}{4}}} \left( 1-q \right) ^{-2} \left( 1+\sqrt {q} \right) ^{ -1} \left( 1+q \right) ^{-1} \left( x+i\sqrt {1-{x}^{2}} \right) ^{-1} + \left( x+i\sqrt {1-{x}^{2}} \right) {q}^{-{\frac {15}{4}}} \left( 1- q \right) ^{-2} \left( 1+\sqrt {q} \right) ^{-1} \left( 1+q \right) ^{ -1}-{\frac {{q}^{9/4}}{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) \left( x+i\sqrt {1-{x}^{2}} \right) }}-{ \frac {{q}^{9/4} \left( x+i\sqrt {1-{x}^{2}} \right) }{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}+ \left( 1-{q}^{-5} \right) \left( 1-{q}^{-4} \right) \left( 1-{q}^{6 } \right) \left( 1-{q}^{7} \right) \left( 1-\sqrt [4]{q} \left( x+i \sqrt {1-{x}^{2}} \right) \right) \left( 1-{q}^{5/4} \left( x+i \sqrt {1-{x}^{2}} \right) \right) \left( 1-{\frac {\sqrt [4]{q}}{x+i \sqrt {1-{x}^{2}}}} \right) \left( 1-{\frac {{q}^{5/4}}{x+i\sqrt {1-{ x}^{2}}}} \right) {q}^{2} \left( 1-q \right) ^{-2} \left( 1-{q}^{2} \right) ^{-2} \left( 1+\sqrt {q} \right) ^{-1} \left( 1+{q}^{3/2} \right) ^{-1} \left( 1+q \right) ^{-1} \left( 1+{q}^{2} \right) ^{-1} +{\frac {q}{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}+{\frac {{q}^{3/2}}{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}-{\frac {{q}^{7}}{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}-{\frac {{q}^{15/2}}{ \left( 1-q \right) ^{2} \left( 1+ \sqrt {q} \right) \left( 1+q \right) }}-{\frac {1}{{q}^{4} \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}-{ \frac {1}{{q}^{7/2} \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}+{\frac {{q}^{2}}{ \left( 1-q \right) ^ {2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}+{\frac {{q}^{5/2 }}{ \left( 1-q \right) ^{2} \left( 1+\sqrt {q} \right) \left( 1+q \right) }}\cdots</math> 求 q→1 的极限值: <math> \lim_{q \to 1}P_{5}(x|q)={\frac {63}{8}}\,{x}^{5}-{\frac {35}{4}}\,{x}^{3}+{\frac {15}{8}}\,x</math> 而5阶勒让德多项式为: <math>P_5(x)={\frac {63}{8}}\,{x}^{5}-{\frac {35}{4}}\,{x}^{3}+{\frac {15}{8}}\,x</math> 两者显然相等,所以 <math> \lim_{q \to 1}P_{5}(x|q)=P_{5}(x)</math> 验证毕 ==图集== {| |[[File:CONTINUOUS Q-LEGENDER POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT.gif|thumb|CONTINUOUS Q-LEGENDER POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT]] |[[File:CONTINUOUS Q-LEGENDER POLYNOMIALS IM COMPLEX 3D MAPLE PLOT.gif|thumb|CONTINUOUS Q-LEGENDER POLYNOMIALS IM COMPLEX 3D MAPLE PLOT]] |[[File:CONTINUOUS Q-LEGENDER POLYNOMIALS RE COMPLEX 3D MAPLE PLOT.gif|thumb|CONTINUOUS Q-LEGENDER POLYNOMIALS RE COMPLEX 3D MAPLE PLOT]] |} {| |[[File:CONTINUOUS Q-LEGENDER POLYNOMIALS ABS DENSITY MAPLE PLOT.gif|thumb|CONTINUOUS Q-LEGENDER POLYNOMIALS ABS DENSITY MAPLE PLOT]] |[[File:CONTINUOUS Q-LEGENDER POLYNOMIALS IM DENSITY MAPLE PLOT.gif|thumb|CONTINUOUS Q-LEGENDER POLYNOMIALS IM DENSITY MAPLE PLOT]] |[[File:CONTINUOUS Q-LEGENDER POLYNOMIALS RE DENSITY MAPLE PLOT.gif|thumb|CONTINUOUS Q-LEGENDER POLYNOMIALS RE DENSITY MAPLE PLOT]] |} ==参考文献== <references/> {{q超几何函数}} [[Category:正交多项式]] [[Category:特殊函数]] [[Category:Q-模拟]]
该页面使用的模板:
Template:Q超几何函数
(
查看源代码
)
返回
连续q勒让德多项式
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息