查看“︁过截角正五胞体”︁的源代码
←
过截角正五胞体
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{Infobox polychoron | name = 过截角正五胞体 | imagename = Schlegel half-solid bitruncated 5-cell.png | caption = [[施莱格尔投影]] | polytope = 过截角正五胞体 | Type = [[均匀多胞体]] | group_type = | Cell = 10 ([[截角四面体|''3.6.6'']]) [[Image:Truncated tetrahedron.png|20px]] | Face = 20 {3}<br/>20 {6} | Edge = 60 | Vertice = 30 | Vertice_type = [[Image:Bitruncated 5-cell verf.png|80px]]<BR>([[锲形体]]) | Schläfli = t<sub>1,2</sub>{3,3,3} | Coxeter_diagram = {{CDD|node|3|node_1|3|node_1|3|node}}<BR>or {{CDD|branch_11|3ab|nodes}} | Coxeter_group = A<sub>4</sub>, <nowiki>[[3,3,3]]</nowiki>, order 240 | Index_references = ''[[Runcinated pentachoron|5]]'' 6 ''[[Cantitruncated 5-cell|7]]'' | Symmetry_group = | dual = | Properties = [[Convex polytope|convex]], [[isogonal figure|isogonal]] [[isotoxal figure|isotoxal]], [[Isochoric figure|isochoric]] }} '''过截角正五胞体'''(又叫正十胞体)是一个四维多胞体, 由10个相同的三维胞[[截角四面体]]组成。每条边连接到两个[[六边形]]和一个[[三角形]]。 过截角正五胞体的五维类比是[[过截角五维正六胞体]]。它的n维类比的[[考克斯特-迪金点图]]都是中间的一个或两个点有环。 过截角正五胞体是两个由一种三维胞所组成的半正多胞体之一。另一个是[[过截角正二十四胞体]],它由48个[[截角立方体]]组成。 == 投影 == {| class=wikitable |+ [[正射投影]] |- align=center !A<sub>k</sub><BR>[[考克斯特平面]] !A<sub>4</sub> !A<sub>3</sub> !A<sub>2</sub> |- align=center !Graph |[[File:4-simplex_t12.svg|150px]] |[[File:4-simplex_t12_A3.svg|150px]] |[[File:4-simplex_t12_A2.svg|150px]] |- align=center ![[二面体群]] |[5] |[4] |[3] |} {| class=wikitable width=440 |[[File:Decachoron stereographic (hexagon).png|220px]]<BR>[[球极投影]]<br>(对着一个六边形面) |[[File:Bitruncated 5-cell net.png|220px]]<BR>[[展开图]] |} == 坐标 == 一个棱长为2的过截角正五胞体的20个顶点的[[笛卡儿坐标系]]坐标 {| | :<math>\pm\left(\sqrt{\frac{5}{2}},\ \frac{5}{\sqrt{6}},\ \frac{2}{\sqrt{3}},\ 0\right)</math> :<math>\pm\left(\sqrt{\frac{5}{2}},\ \frac{5}{\sqrt{6}},\ \frac{-1}{\sqrt{3}},\ \pm1\right)</math> :<math>\pm\left(\sqrt{\frac{5}{2}},\ \frac{1}{\sqrt{6}},\ \frac{4}{\sqrt{3}},\ 0\right)</math> :<math>\pm\left(\sqrt{\frac{5}{2}},\ \frac{1}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ \pm2\right)</math> :<math>\pm\left(\sqrt{\frac{5}{2}},\ -\sqrt{\frac{3}{2}},\ \pm\sqrt{3},\ \pm1\right)</math> :<math>\pm\left(\sqrt{\frac{5}{2}},\ -\sqrt{\frac{3}{2}},\ 0,\ \pm2\right)</math> :<math>\pm\left(0,\ 2\sqrt{\frac{2}{3}},\ \frac{4}{\sqrt{3}},\ 0\right)</math> :<math>\pm\left(0,\ 2\sqrt{\frac{2}{3}},\ \frac{-2}{\sqrt{3}},\ \pm2\right)</math> |} 更简单的,过截角正五胞体的顶点是五维空间[[笛卡儿坐标系]]的(0,0,1,2,2)或(1,0,0,0,-1)的全排列。 == 参考文献 == * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Wayback|url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=20160711140441 }} *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] *[[Coxeter]], ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.) **Coxeter, H. S. M. ''Regular Skew Polyhedra in Three and Four Dimensions.'' Proc. London Math. Soc. 43, 33-62, 1937. * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) *{{GlossaryForHyperspace | anchor=Pentachoron | title=Pentachoron}} ** {{PolyCell | urlname = section1.html| title = 1. Convex uniform polychora based on the pentachoron - Model 3}} * {{KlitzingPolytopes|polychora.htm|4D|uniform polytopes (polychora)}} x3x3o3o - tip, o3x3x3o - deca [[Category:四维几何]] [[Category:四维多胞体]] [[Category:多胞体]]
该页面使用的模板:
Template:GlossaryForHyperspace
(
查看源代码
)
Template:Infobox polychoron
(
查看源代码
)
Template:KlitzingPolytopes
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:PolyCell
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
过截角正五胞体
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息