查看“︁边值问题”︁的源代码
←
边值问题
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{redirect2|邊界條件|軟體測試時有關邊界的測試方式|邊界案例}} {{NoteTA |G1 = Math}} [[File:Boundary value problem-en.svg|thumb|right|圖中的區域為[[微分方程]]有效的區域,且函數在邊界上的值已知]] 在[[微分方程]]中,'''边值问题'''是一个微分方程和一组称之为'''边界条件'''的约束条件。边值问题的解通常是符合约束条件的微分方程的解。 物理学中经常遇到边值问题,例如[[波动方程]]等。許多重要的边值问题屬於[[Sturm-Liouville理論|Sturm-Liouville問題]]。這類問題的分析會和[[微分算子]]的[[本徵函數]]有關。 在实际应用中,边值问题应当是[[适定]]的(即:存在解,解唯一且解會隨著初始值連續地變化)。許多[[偏微分方程]]領域的理論提出是為要證明科學及工程應用的許多边值问题都是适定問題。 最早研究的边值问题是[[狄利克雷问题]],是要找出[[调和函数]],也就是[[拉普拉斯方程]]的解,後來是用[[狄利克雷原理]]找到相關的解。 ==說明== 边值问题類似[[初值問題]],边值问题的條件是在區域的邊界上,而初值問題的條件都是在獨立變數及其導數在某一特定值時的數值(一般是定義域的下限,所以稱為初值問題)。 例如獨立變數是時間,定義域為[0,1],边值问题的條件會是<math>y(t)</math>在<math>t=0</math>及<math>t=1</math>時的數值,而初值问题的條件會是<math>t=0</math>時的<math>y(t)</math>及<math>y'(t)</math> 之值。 若鐵棒的一端為[[絕對零度]],另一端溫度為水的凝固點,要找到鐵棒溫度隨位置的變化即為一個边值问题。 若問題和時間和空間都有關,边界條件需為某一個特定點下所有時間對應的值,以及某一個特定時間時所有位置對應的值。 以下是一個边值问题的例子 :<math>y''(x)+y(x)=0 \, </math> 要求解滿足以下邊界條件的函數<math>y(x)</math> :<math>y(0)=0, \ y(\pi/2)=2.</math> 若沒有邊界條件,以上微分方程的通解是 :<math>y(x) = A \sin(x) + B \cos(x).\,</math> 根據邊界條件<math>y(0)=0</math>,可得 :<math>0 = A \cdot 0 + B \cdot 1</math> 可以得到<math>B=0</math>的結論。根據邊界條件<math>y(\pi/2)=2</math>,可得 :<math>2 = A \cdot 1 </math> 因此<math>A=2</math>。因此可以找到滿足上述邊界條件的唯一解,即為 :<math>y(x)=2\sin(x). \,</math> ==边值问题的種類== [[File:Bounday value problem for a rod.PNG|frame|right|一個二維熱傳的边值问题]] 根据条件的形式,边值条件分以下三类<ref>{{cite book |author = Qiang Wang Guoding Li Ke Gong |title = 電磁場理論基礎 |year = 2003 |publisher = 五南圖書出版股份有限公司 |location = 台北 |accessdate = 2010-09-23 |pages = p88 |url = http://books.google.com.tw/books?id=fG_ilnwQP0oC&pg=PA88&lpg=PA88&dq=%E9%82%8A%E7%95%8C%E5%80%BC%E5%95%8F%E9%A1%8C&source=bl&ots=wMoviXtsz5&sig=fGoKanEmGec9yZFrwoWp8S7h_Ho&hl=zh-TW&sa=X&ei=wSlfUNC4JcTTmAWytICYCg&ved=0CDAQ6AEwAA#v=onepage&q=%E9%82%8A%E7%95%8C%E5%80%BC%E5%95%8F%E9%A1%8C&f=false |ISBN = }}</ref>: * 第一类边值条件:也稱為[[狄利克雷边界条件]],直接描述物理系统边界上的物理量,例如振动的弦两端与平衡位置的距离; * 第二类边值条件:也稱為[[诺伊曼边界条件]],描述物理系统边界上物理量垂直邊界的导数的情况,例如导热细杆端点的热流; * 第三类边值条件:物理系统边界上物理量与垂直邊界导数的线性组合,例如,细杆端点的自由冷却,温度、热流均不确定,但是二者的关系确定,即可列出二者线性组合而成的边值条件。 边值条件也可以根據边值问题對應的微分[[算子]]來分類:若是使用[[椭圆算子]],則問題為椭圆边值问题;使用[[雙曲線算子]],則問題為雙曲線边值问题。依微分算子還可以將問題再細分為線性及非線性等。 {{clear|right}} == 参考文献 == {{Reflist}} == 参见 == {{multicol}} ;相關數學概念 *[[初值問題]] *[[微分方程]] *[[格林函數]] *{{link-en|隨機過程和邊界值問題|Stochastic processes and boundary value problems}} *[[Sturm-Liouville理論]] *[[狄利克雷边界条件]] *[[诺伊曼边界条件]] *{{link-en|Robin边界条件|Robin boundary condition}} *{{link-en|索末菲輻射條件|Sommerfeld radiation condition}} *[[柯西邊界條件]] *{{link-en|混合邊界條件|Mixed boundary condition}} {{multicol-break}} ;物理應用 *[[波]] *{{link-en|正交模|normal mode}} *[[靜電學]] *[[拉普拉斯方程]] *[[位勢論]] *{{link-en|大氣中無線電波衰減計算|Computation of radiowave attenuation in the atmosphere}} *[[黑洞]] *{{link-en|完美熱接觸|Perfect thermal contact}} {{multicol-break}} ;數值運算''' *[[打靶法]] *{{link-en|直接多重打靶法|direct multiple shooting method}} {{multicol-end}} {{Authority control}} [[Category:微分方程]] [[Category:邊界條件]]
该页面使用的模板:
Template:Authority control
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Clear
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Multicol
(
查看源代码
)
Template:Multicol-break
(
查看源代码
)
Template:Multicol-end
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Redirect2
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
边值问题
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息