查看“︁轨道共振”︁的源代码
←
轨道共振
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA |G1=天文學 |G2=物理學 }} '''軌道共振'''是[[天體力學]]中的一種效應與現象,指當[[軌道]]上的天體於[[軌道週期|週期]]上有簡單(小數值)的[[整數]]比時,定期施加的[[引力]]影響到對方所產生的。軌道共振的物理原理在概念上類似於推動兒童盪的鞦韆,軌道和擺動的鞦韆之間有著一個[[共振|自然頻率]],其它機制和“推”所做的動作週期性地重複施加,產生累積性的影響。軌道共振大大增加了相互之間引力影響的機構,即它們能夠改變或限制對方的軌道。在多數情況下,這會導致“不穩定”的互動,在其中的兩者互相交換[[動能]]和轉移軌道,直到共振不再存在。在某些情況下,一個諧振系統可以穩定和自我糾正,所以這些天體仍維持著共振。例如,[[木星]]衛星[[木衛三|佳利美德]]、[[木衛二|歐羅巴]]、和[[木衛一|埃歐]]軌道的1:2:4共振,以及[[冥王星]]和[[海王星]]之間的2:3共振。[[土星]]內側衛星的不穩定共振造成[[土星環]]中間的空隙。1:1的共振(有著相似軌道半徑的天體)在特殊的情況下,造成[[太陽系]]大天體將共享軌道的小天體彈射出去;這是[[清除鄰近的小天體|清除鄰居]]最廣泛應用的機制,而此一效果也應用在目前的[[行星定義]]中。 除了拉普拉斯共振圖(見下文)中指出,在這篇文章中的共振比率應被解釋為在相同的時間間隔內完成'''軌道數的比例''',而不是作為'''公轉週期比'''(其中將會呈反比關係)。上面2:3的比例意味著冥王星完成兩次完整公轉的同時,海王星要完成三次完整的公轉。 == 歷史 == 自17世紀發現[[牛頓萬有引力定律]]以來,從[[皮耶爾-西蒙·拉普拉斯|拉普拉斯]]開始,就有許多數學家全神貫注[[太陽系穩定性問題|太陽系的穩定性]]。[[多体问题|二體問題近似解]]的穩定軌道忽略其它天體的影響。在[[太陽系]]中添加其它天體的交互作用對穩定性造成的影響很小,但是首先不知道在很長的週期中添加會造成何種軌道參數的改變和不同的配置,或是其它一些穩定的影響是否能維持行星軌道的配置。 拉普拉斯是最先找到解釋[[伽利略衛星]]奇異舞蹈(見下文)答案的人。持平而論,自當時迄今以來,在這個領域的研究是非常活躍的,但是仍有許多待解決的問題(例如,在巨大行星的環,環中的小衛星和微粒的交互作用如何維繫環)。 == 共振的類型 ==<!-- This section is linked from [[Pandora (moon)]] --> [[File:TheKuiperBelt 75AU All.svg|thumb|300px|對照於那些[[傳統古柏帶天體|QB1]](藍色)和非共振(或不知道是否共振)的[[離散盤]]天體(灰色),[[共振海王星外天體]](紅色)的[[半長軸]]聚集在與[[海王星]]的低整數共振(接近頂端的垂直紅色條)。]] 通常,軌道共振可能 *涉及一個或任何組合的軌道參數(例如,[[離心率]]相對於[[半長軸]],或軌道傾角)。 *從短期的任何時間尺度來看,在10<sup>4</sup>至10<sup>6</sup>年的[[長期變化|長期]]測量都有其[[通约性 (天文学)|通約性]]。 *導致即使長期穩定運行的軌道,也有可能造成不穩定性。 '''[[平均運動軌道共振]]'''發生在兩個天體的[[軌道|公轉]]週期,其中一個的週期是對方的簡單整數比。依據詳細的資料,這可以使軌道穩定,也可以使軌道被摧毀。當這兩個天體在這種同步的運動中沒有密切接觸時,可能會出現''穩定''。例如: *無論與[[海王星]]多麼接近,[[冥王星]]和[[冥族小天體]]的軌道都是穩定的,因為它們與海王星是3:2的共振。共振可以確保當它們接近近日點和海王星的軌道時,海王星是在相當遠的距離之外(平均有它的軌道距離的四分之一)。其它沒有共振的近海王星天體(數量更多)會被海王星強大的[[攝動]]從這個區域逐出。還有規模較小,但是很明確有著1:1共振的[[共振海王星外天體]]([[海王星特洛伊]])、[[共振海王星外天體#已知的群體|3:5]](週期約275年)、[[共振海王星外天體#已知的群體|4:7]](週期約290年)、[[共振海王星外天體#已知的群體|1:2]](週期約330年)、和[[共振海王星外天體#已知的群體|2:5]](週期約410年),除此之外,在海王星之外還有其它的。 *在距離太陽3.5AU以內的[[小行星帶]],有與[[木星]]有著3:2、4:3、和1:1的族群分布著(特別是[[希爾達族]]、[[小行星279|(279)圖勒]]、和[[特洛伊天體]])。 [[File:Kirkwood Gaps.svg|300px|thumb|[[小行星]]軌道[[半長軸]]的分布圖,顯示出因為與[[木星]]共振造成不穩定的[[柯克伍德空隙]]。]] [[File:PIA10452 - Saturn A ring spiral density waves.jpg|300px|thumb|在[[土星環#A環|土星環]]的[[密度波理論|螺旋密度波]]是[[土星的衛星#牧羊人衛星|環內的衛星]]所激起的共振。這些波從土星(左上方)向外傳播,位於中心正下方最大的波與[[土衛十]]有著6:5的共振。]] 軌道共振也可以摧毀一個穩定的軌道。對小天體而言,不穩定實際上是更有可能的。例如: *在距離太陽3.5AU以內的[[小行星帶]],與[[木星]]的主要平均運動軌道共振落在小行星位置分布的''空隙'',[[柯克伍德空隙]](最顯著的是在3:1、5:2、7:3、和2:1的共振)。在這些位置上的[[小行星]]因為反覆的受到[[木星]]的攝動,幾乎已經完全被拋空了。然而,還是有少數的小行星目前暫時在或接近這些共振的位置。例如,[[艾琳達族]]就為位於或接近3:1共振,而它們的軌道離心率在與木星的交互作用下持續的在增加,直到最終它們會與內側的行星密切接觸,然後將它們從共振軌道彈射出去。 *在[[土星環]]內,[[土星環#卡西尼縫|卡西尼縫]]是[[土星環#B環| B環]]和外側的[[土星環#A環| A環]]之間的空隙,與[[土衛一|米瑪斯]]有著2:1的共振(更特別的是[[土星環#卡西尼縫|卡西尼縫]]內側邊緣[[土星環#惠更斯縫|惠更斯縫]]的位置。)。 *在土星環,[[土星環#恩克環縫|恩克環縫]]和[[土星環#凱勒環縫|基勒環縫]]是與置身在A環內的[[土衛十八|潘]]和[[土衛三十五|達佛涅斯]]1:1共振清空微粒形成的。A環的外側是由[[土衛十]]有著7:6的不穩定共振維繫著。 大多數天體中的共振軌道都有著相同的方向,然而有少數是[[順行和逆行|逆行]]的,[[達摩克型小行星]]是被土星或木星捕獲,並被發現暫時處在'''平均運動軌道共振'''上的小行星<ref name="Morais_2013">{{cite journal |last1=Morais |first1=M. H. M. |last2=Namouni |first2=F. |date=21 September 2013 |title=Asteroids in retrograde resonance with Jupiter and Saturn |journal=[[Monthly Notices of the Royal Astronomical Society Letters]] |arxiv=1308.0216 |bibcode=2013MNRAS.436L..30M |doi=10.1093/mnrasl/slt106 |volume=436 |pages=L30–L34 |s2cid=119263066 }}</ref>。這種軌道的交互作用比軌道在同一方向的機制的交互作用為弱<ref name = "Morais_2013"/>。 '''[[拉普拉斯共振]]'''發生在三個或更多天體的軌道週期之間有著簡單整數比的系統上。例如,木星的[[木衛三|佳利美德]]、[[木衛二|歐羅巴]]、和[[木衛一|埃歐]]軌道的1:2:4軌道共振。[[系外行星]][[格利澤876]] e、b、和c,也有1:2:4的軌道共振<ref name="rivera2010"/>。 '''[[林達博共振]]'''導出[[密度波理論|螺旋密度波]]不僅適用在[[星系]](恆星是受螺旋臂本身的[[諧振|力]]支配的),也適用於[[土星環]](環中的微粒是受到[[土星的衛星|土星衛星]]的力支配)。 '''[[長期共振]]'''發生於兩個軌道的[[歲差 (天文)|進動]]同步時(通常是[[拱點|近日點]]或[[升交點]])。一顆小天體在與大許多的天體(例如[[行星]])長期共振下,將有與大天體相同的速率。長時間(100萬年或更長)的長期共振會改變小天體的[[軌道離心率]]和[[軌道傾角]]。 幾個明顯的長期共振例子,包括土星都是。土星自轉軸的進動和海王星自轉軸的進動之間有著共振(兩者的周期都長達187萬年),已經確定與土星巨大的[[轉軸傾角]](26.7°)可能有著相同的來源<ref>{{cite web | last = Beatty | first = J. K. | authorlink = | coauthors = | title = Why Is Saturn Tipsy? | work = SkyAndTelescope.Com | publisher = | date = 2003-07-23 | url = http://www.skyandtelescope.com/news/3306806.html?page=1&c=y | doi = | accessdate = 2009-02-25 | archive-url = https://web.archive.org/web/20090903170550/http://www.skyandtelescope.com/news/3306806.html?page=1&c=y | archive-date = 2009-09-03 | dead-url = yes }}</ref><ref>{{cite journal | last = Ward | first = W. R. | authorlink = | coauthors = Hamilton, D. P. | title = Tilting Saturn. I. Analytic Model | journal = [[Astronomical Journal]] | volume = 128 | issue = 5 | pages = 2501–2509 | publisher = [[American Astronomical Society]] | date = November 2004 | url = http://www.iop.org/EJ/abstract/1538-3881/128/5/2501/ | doi = 10.1086/424533 | accessdate = 2009-02-25 | bibcode=2004AJ....128.2501W}}</ref><ref>{{cite journal | last = Hamilton | first = D. P. | authorlink = | coauthors = Ward, W. R. | title = Tilting Saturn. II. Numerical Model | journal = [[Astronomical Journal]] | volume = 128 | issue = 5 | pages = 2510–2517 | date = November 2004 | url = http://www.iop.org/EJ/abstract/1538-3881/128/5/2510 | doi = 10.1086/424534 | accessdate = 2009-02-25 | bibcode=2004AJ....128.2510H}}</ref>。最初,土星的傾角大概是比角接近木星(3.1°)。古柏帶逐漸的枯竭使海王星的進動減少;最終,兩著的頻率匹配,而土星的軸向進動進入到自旋-軌道共振,導致土星的傾角增加(海王星軌道的角動量是土星自轉的10<sup>4</sup>倍,因此主導著互動的關係。)。 [[小行星]]和[[土星]]之間的[[長期共振#ν6共振|拱點長期共振]](''ν<sub>6</sub>'' = ''g -g<sub>6</sub>'')協助塑造出了小行星帶。接近它的小行星,離心率會緩慢的增加,直到它們成為[[火星軌道穿越小行星|接近火星]]的小行星。此時,它們會因為與[[火星]]遭遇而從[[小行星帶]]彈出。這種共振形成小行星帶內部和側面邊界的距離大約是2[[天文單位|AU]]和約20°的[[軌道傾角]]。 數值模擬認為[[水星]]和[[木星]](''g<sub>1</sub>=g<sub>5</sub>'')之間的拱點長期共振,最終有可能增加水星的離心率,並且可能在今後的數億年破壞內太陽系<ref name = "Laskar2008">{{cite journal | author= Laskar, J. | date= 2008-03-18 | title= Chaotic diffusion in the Solar System | journal= [[Icarus (journal)|Icarus]] | volume=196 | issue=1 |pages =1–15 | bibcode= 2008Icar..196....1L | doi= 10.1016/j.icarus.2008.02.017|arxiv = 0802.3371 }}</ref><ref name = "Laskar2009">{{cite journal | author= Laskar, J.; Gastineau, M. | date= 2009-06-11 | title= Existence of collisional trajectories of Mercury, Mars and Venus with the Earth | journal= [[Nature (journal)|Nature]] | volume=459 | issue=7248 | pages=817–819 | doi=10.1038/nature08096 | bibcode=2009Natur.459..817L | pmid=19516336 }}</ref>。 在[[土星環]][[土星環#C環|C環]]內的[[土星環#可倫坡縫和泰坦小環|泰坦小環]]代表著另一種形式的共振,在其中的一個軌道的[[進動#行星軌道進動|拱點進動]]率完全符合另一個的公轉速度。這個偏心小環外側的末端永遠朝向土星最大的衛星[[土衛六|泰坦]]。 '''[[古在機制|古在共振]]'''發生在對軌道傾角和離心率[[攝動理論|攝動]]的同步振盪(增加離心率而同時漸少傾角,反之亦然)。這種共振僅適用於高軌道傾角的天體;因此,這種軌道往往是不穩定的,因為越來越大的離心率會導致[[拱點|近心點]]變小,因而造成碰撞或被[[潮汐力]]破壞(對於大衛星)。 涉及軌道離心率另一種類型的例子是木衛三和木衛四的離心率,即使有著相對的相位,依然有181年的共通變化週期<ref name=Musotto2002>{{cite journal|last=Musotto|first=S.|coauthors=Varadi, F.; Moore, W.; Schubert, G.|title=Numerical Simulations of the Orbits of the Galilean Satellites|year=2002|volume=159|issue=2|pages=500–504|doi=10.1006/icar.2002.6939| bibcode=2002Icar..159..500M | journal = [[Icarus (journal)|Icarus]]}}</ref>。 == 在太陽系的平均運動共振 == [[File:Haumea.GIF|thumb|300px|描繪在[[旋轉框架]]中,被推測與[[海王星]]有著7:12共振的[[妊神星]],圖中的海王星(右下方的藍色小點)被固定不動。妊神星變化著的軌道,對正於海王星會定期的反轉([[天秤動]]),保持著共振。]] [[File:Galilean moon Laplace resonance animation.gif|thumb|365px|由三顆[[伽利略衛星]]展示的拉普拉斯共振。圖中的比率是公轉的週期比。]] 在[[太陽系]]內只有少數的平均運動共振,包括行星、[[矮行星]]或大的[[天然衛星]]是已經知道的(在[[小行星]]、[[行星環]]、[[內衛星|小衛星]]和更小的[[古柏帶]]天體,和許多[[矮行星候選者列表|可能的矮行星]]還會有更多): * 2:4 [[土卫三|土衛三特提斯]]–[[土卫一|土衛一彌瑪斯]] * 2:3 [[冥王星]]–[[海王星]] * 1:2 [[土衛四|土衛四狄俄涅]]–[[土卫二|土衛二恩克拉多斯]] * 3:4 [[土卫七|土衛七許珀里翁]]–[[土卫六|土衛六泰坦]] * 1:2:4 [[木衛三|木衛三蓋尼米德]]–[[木衛二|木衛二歐羅巴]]–[[木衛一|木衛一伊俄]] 此外,[[妊神星]]被認為是與海王星有著7:12的共振<ref name = "Brown_2007">{{cite journal | last = Brown | first = M. E. | authorlink = Michael E. Brown | coauthors = Barkume, K. M.; Ragozzine, D.; Schaller, E. L. | title = A collisional family of icy objects in the Kuiper belt | journal = [[Nature (journal)|Nature]] | volume = 446 | issue = 7133 | pages = 294–296 | publisher = | date = 2007-03-15 | url = http://www.nature.com/nature/journal/v446/n7133/abs/nature05619.html | doi = 10.1038/nature05619 | pmid = 17361177 | bibcode = 2007Natur.446..294B | accessdate = 2012-02-18 | archive-date = 2017-02-10 | archive-url = https://web.archive.org/web/20170210130547/http://www.nature.com/nature/journal/v446/n7133/abs/nature05619.html | dead-url = no }}</ref><ref name = "Ragozzine">{{cite journal | last = Ragozzine | first = D. | authorlink = | coauthors = Brown, M. E. | title = Candidate members and age estimate of the family of Kuiper Belt object 2003 EL61 | journal = [[The Astronomical Journal]] | volume = 134 | issue = 6 | pages = 2160–2167 | publisher = | date = 2007-10-18 | url = http://iopscience.iop.org/1538-3881/134/6/2160 | doi = 10.1086/522334 | bibcode = 2007AJ....134.2160R | arxiv = 0709.0328 | accessdate = 2012-02-18}}</ref>,[[鬩神星]]和[[鸟神星|鳥神星]]與海王星分別有5:17和6:11的共振<ref name = "10th Planet">{{cite web | last = Dunn | first = T. | authorlink = | title = The 10th Planet | work = [http://www.orbitsimulator.com/gravity/articles/what.html GravitySimulator.Com] | publisher = | date = | url = http://www.orbitsimulator.com/gravity/articles/newtno.html | accessdate = 2012-02-18 | archive-date = 2019-09-02 | archive-url = https://web.archive.org/web/20190902034836/http://www.orbitsimulator.com/gravity/articles/newtno.html | dead-url = no }}</ref>。 週期之間''簡單的整數比''之後,很方便和簡化的隱藏了許多更複雜的關係: *[[合 (天體位置)|合]]的點可以定義在附近振盪的共振均衡點([[天秤動]])。 *在非零[[離心率]]的場合,[[軌道交點|交點]]或[[拱點|近日點]]可以漂移(共振的關聯,短週期,不是長期進動)。giv 參考稍後的插圖,考慮埃歐-歐羅巴著名的1:2共振。如果軌道週期在這種的關係,[[平均運動]]<math>n\,\!</math>(週期的倒數,通常表示為度/每天)將滿足下式: : <math>n_{\rm Io} - 2\cdot n_{\rm Eu} = 0 </math> 代入資料(來自維基百科)將可以得到−0.7395° /日,於零有著極大不同的值! 實際上,共振是完美的,但它也涉及[[近木點]](軌道上最接近木星的點)的進動,<math>\dot\omega</math>。正確的方程式(拉普拉斯方程式的一部分)是: : <math>n_{\rm Io} - 2\cdot n_{\rm Eu} + \dot\omega_{\rm Io} = 0 </math> 換言之,在考慮到近木點的進動,埃歐的平均運動確實是歐羅巴的兩倍。一位者設定在漂移的近木點上的觀測者,將看見衛星距角在同一個地點伸展。除了[[土卫三|土衛三特提斯]]–[[土卫一|土衛一彌瑪斯]],列在上面的其它對都滿足相同類型的方程式。在這種情況下,共振滿足方程式 : <math>4\cdot n_{\rm Te} - 2\cdot n_{\rm Mi} - \dot\Omega_{\rm Te}- \dot\Omega_{\rm Mi}= 0</math> 天秤動的會合點將會圍繞在這兩顆衛星[[軌道交點|交點]]的中間點上。 === 拉普拉斯共振 === [[File:TheLaplaceResonance2.png|thumb|300px|埃歐、歐羅巴、佳利美德共振的圖解。從中心向外依序為埃歐(黃色)、歐羅巴(灰色)和佳利美德(黑色)。]] 最著名的共振涉及埃歐-歐羅巴-佳利美德,包括下面鎖定衛星''軌道相位''的關係: :<math>\Phi_L = \lambda_{\rm Io} - 3\cdot\lambda_{\rm Eu} + 2\cdot\lambda_{\rm Ga} = 180^\circ</math> 此處<math>\lambda</math>是衛星的[[平均經度]]。這種關係使得三重的合是不可能的。圖解說明了衛星埃歐在1、2、和3個週期後的位置。(在[[格利澤876]]的系統,相較之下,是最外層行星的運行軌道和每一顆行星合的三重關係<ref name="rivera2010"/>。) === 冥族小天體的共振 === 矮行星[[冥王星]]被困在與[[海王星]]有著共振軌道的圈套中,他的共振包括: *平均運動2:3的共振 *[[近日點]]的共振(大約90°的[[天秤動]]),維持近日點在[[黃道]]的上方。 *近日點共振的經度與海王星相關聯 這些共振的一個結果是當冥王星越過海王星的軌道時,兩者之間的距離至少在30天文單位以上,而兩者之間最小的距離大約是17天文單位,而冥王星和天王星之間的距離最小距離只有11天文單位<ref>{{cite web |title = Pluto's Orbit |author = [[Renu Malhotra]] |url = http://www.nineplanets.org/plutodyn.html |year = 1997 |accessdate = 2007-03-26 |archive-date = 2007-04-03 |archive-url = https://web.archive.org/web/20070403061837/http://nineplanets.org/plutodyn.html |dead-url = yes }}</ref>。(詳細的解釋和圖說請參見[[冥王星#軌道和自轉|冥王星的軌道]]。) 同樣和海王星有著2:3共振的天體,稱為''[[冥族小天體]]'',是可能成為矮行星的[[小行星90482|亡神星]]。亡神星的軌道離心率和傾角都與冥王星相似,然而與海王星有著相同的共振使它很不自然的總在與冥王星相對的相位上;所以亡神星有時會被描述為''反冥王星''<ref name=MBP>{{cite web |date=2009-03-23 |title=S/2005 (90482) 1 needs your help |publisher=Mike Brown's Planets (blog) |author=Michael E. Brown |url=http://www.mikebrownsplanets.com/2009/03/s1-90482-2005-needs-your-help.html |accessdate=2009-03-25 |authorlink=Michael E. Brown |archive-date=2012-02-08 |archive-url=https://www.webcitation.org/65IF0OJpn?url=http://www.mikebrownsplanets.com/2009/03/s1-90482-2005-needs-your-help.html |dead-url=yes }}</ref>。 == 系外行星的平均運動共振 == 雖然大多數以經被發現的[[系外行星]]系統還沒有被發現有平均運動共振,但已有一些明顯的例子被揭漏: *如前述題道的[[格利澤876]]e、b和c,有著1:2:4的軌道共振,週期分別為124.3、61.1和30天<ref name="rivera2010">{{cite journal |last1=Rivera |first1=E. J. |last2=Laughlin |first2=G. |last3=Butler |first3=R. P. |last4=Vogt |first4=S. S. |last5=Haghighipour |first5=N. |last6=Meschiari |first6=S. |year=2010 |title=The Lick-Carnegie Exoplanet Survey: A Uranus-mass Fourth Planet for GJ 876 in an Extrasolar Laplace Configuration |journal=[[The Astrophysical Journal]] |volume=719 |issue=1 |pages=890–899 |arxiv=1006.4244 |bibcode=2010ApJ...719..890R |doi=10.1088/0004-637X/719/1/890|s2cid=118707953 }}</ref><ref name = "Marcy_2001">{{cite journal | url= | last=Marcy | first = Geoffrey W. | title=A Pair of Resonant Planets Orbiting GJ 876 | journal=[[The Astrophysical Journal]] | volume=556 | issue=1 | pages=296–301| year=2001 | doi=10.1086/321552 | last2=Butler | first2=R. Paul | last3=Fischer | first3=Debra | last4=Vogt | first4=Steven S. | last5=Lissauer | first5=Jack J. | last6=Rivera | first6=Eugenio J. | bibcode=2001ApJ...556..296M}}</ref>。 *[[KOI-730]] d、b、c和e出現3:4:6:8的共振,軌道週期為19.72、14.79、9.85和7.38天<ref name=EPE-KOI730>Extrasolar Planets Encyclopaedia, [http://exoplanet.eu/star.php?st=KOI-730 KOI-730] {{webarchive|url=https://web.archive.org/web/20120616124736/http://exoplanet.eu/star.php?st=KOI-730 |date=2012-06-16 }}</ref><ref name="Beatty">{{cite web |last = Beatty |first = Kelley |title = Kepler Finds Planets in Tight Dance |work = |publisher = [[Sky and Telescope]] |date = 2011-03-05 |url = http://www.skyandtelescope.com/news/117467488.html |accessdate = 2012-10-16 |archive-url = https://archive.today/20120529195155/http://www.skyandtelescope.com/news/117467488.html |archive-date = 2012-05-29 |dead-url = yes }}</ref><ref name = "Lissauer_2011">{{cite journal |last = Lissauer |first = J. |authorlink = Jack J. Lissauer |coauthors = Ragozzine, D.; Fabrycky, D. C.; ''et al.'' |title = Architecture and dynamics of Kepler's candidate multiple transiting planet systems |journal = [[The Astrophysical Journal Supplement Series]] |volume = 197 |issue = 1 |pages = 1–26 |date = 2011-10-13 |url = http://iopscience.iop.org/0067-0049/197/1/8 |doi = 10.1088/0067-0049/197/1/8 |accessdate = 2012-10-16 |arxiv = 1102.0543 |bibcode = 2011ApJS..197....8L |archive-date = 2014-07-14 |archive-url = https://web.archive.org/web/20140714030311/http://iopscience.iop.org/0067-0049/197/1/8 |dead-url = no }}</ref>。 *[[KOI-500]] c、b、e、d和f,出現接近20:27:41:62:193的共振,週期分別為9.522、7.053、4.645、3.072和0.9868天<ref name = "Lissauer_2011"/><ref name=EPE-KOI500>Extrasolar Planets Encyclopaedia, [http://exoplanet.eu/star.php?st=KOI-500 KOI-500]{{dead link|date=2018年1月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><ref name="Choi_2012">{{cite web | last = Choi | first = Charles Q. | title = Tiniest Alien Solar System Discovered: 5 Packed Planets | work = [http://www.space.com Space.Com web site] | publisher = TechMediaNetwork.com | date = 2012-10-15 | url = http://www.space.com/18073-tiny-alien-solar-system-exopl anets.html | accessdate = 2012-10-16 }}{{dead link|date=2018年4月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>。 *[[KOI-738]]和[[KOI-787]]出現一對7:9共振的行星(比率各自為1/1.285871和1/1.284008)<ref name = "Lissauer_2011"/> *[[克卜勒37]] d、c和b出現誤差在1%內的5:8:15共振,週期分別為39.792187、21.301886和13.367308天<ref name="BarclayRowe2013">{{cite journal|last1=Barclay|first1=T.|last2=Rowe|first2=J. F.|last3=Lissauer|first3=J. J.|last4=Huber|first4=D.|last5=Fressin|first5=F.|last6=Howell|first6=S. B.|last7=Bryson|first7=S. T.|last8=Chaplin|first8=W. J.|last9=Désert|first9=J.-M.|last10=Lopez|first10=E. D.|last11=Marcy|first11=G. W.|last12=Mullally|first12=F.| last13=Ragozzine|first13=D.| last14=Torres|first14=G.|last15=Adams|first15=E. R.|last16=Agol|first16=E.| last17=Barrado|first17=D.| last18=Basu|first18=S.|last19=Bedding|first19=T. R.|last20=Buchhave|first20=L. A.|last21=Charbonneau|first21=D.|last22=Christiansen|first22=J. L.|last23=Christensen-Dalsgaard|first23=J.|last24=Ciardi|first24=D.|last25=Cochran|first25=W. D.|last26=Dupree|first26=A. K.|last27=Elsworth|first27=Y.|last28=Everett|first28=M.|last29=Fischer|first29=D. A.|last30=Ford|first30=E. B.|last31=Fortney|first31=J. J.|last32=Geary|first32=J. C.|last33=Haas|first33=M. R.|last34=Handberg|first34=R.|last35=Hekker|first35=S.|last36=Henze|first36=C. E.|last37=Horch|first37=E.|last38=Howard|first38=A. W.|last39=Hunter|first39=R. C.|last40=Isaacson|first40=H.|last41=Jenkins|first41=J. M.|last42=Karoff|first42=C.|last43=Kawaler|first43=S. D.|last44=Kjeldsen|first44=H.|last45=Klaus|first45=T. C.|last46=Latham|first46=D. W.|last47=Li|first47=J.|last48=Lillo-Box|first48=J.|last49=Lund|first49=M. N.|last50=Lundkvist|first50=M.|last51=Metcalfe|first51=T. S.|last52=Miglio|first52=A.|last53=Morris|first53=R. L.|last54=Quintana|first54=E. V.|last55=Stello|first55=D.|last56=Smith|first56=J. C.|last57=Still|first57=M.|last58=Thompson|first58=S. E.|title=A sub-Mercury-sized exoplanet|url=http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11914.html| journal=Nature|date=2013-02-20|issn=0028-0836|doi=10.1038/nature11914|accessdate=2013-02-21|arxiv = 1305.5587 |bibcode = 2013Natur.494..452B }}</ref>。 系外行星中呈現接近1:2共振平均運動的現象非常普遍。[[凌日法]]發現的系統有16%的報告中有這樣的事例(週期比例的範圍在1.83-2.18)<ref name = "Lissauer_2011"/>。以[[都卜勒光譜學|都卜勒光譜]]特徵發現的系外行星系統也有六分之一的比例(在這種情況下週期比率的範圍更窄)<ref name = "Wright_2011"/>。由於對系統的知識還不完整,實際的比例可能會更高<ref name = "Lissauer_2011"/>。整體而言,約三分之一徑向速度系統的特徵有一對行星接近[[通约性 (天文学)|通約性]]<ref name = "Lissauer_2011"/><ref name = "Wright_2011">{{cite journal | last = Wright | first = J. T. | coauthors = Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, J. A.; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N. | title = The Exoplanet Orbit Database | journal = [[Publications of the Astronomical Society of the Pacific]] | volume = 123 | issue = 902 | pages = 412–42 | date = April 2011 | url = http://www.jstor.org/stable/info/10.1086/659427 | doi = 10.1086/659427 | accessdate = 2012-11-07|arxiv = 1012.5676 |bibcode = 2011PASP..123..412W }}</ref>。更常見的視一對行星的軌道週期有著接近平均運動共振的比率,不是高了幾個百分點就是低了幾個百分點(特別是在第一階的共振,整數上的比率只有一個有不同)<ref name = "Lissauer_2011"/>。在與恆星有[[潮汐加速|潮汐作用]]的情況下,這樣的預測是很接近真實的<ref name = "Terquem_2007">{{cite journal | last = Terquem | first = C. | coauthors = Papaloizou, J. C. B. | title = Migration and the Formation of Systems of Hot Super-Earths and Neptunes | journal = [[The Astrophysical Journal]] | volume = 654 | issue = 2 | pages = 1110–1120 | date = 2007-01-10 | url = http://iopscience.iop.org/0004-637X/654/2/1110/ | doi = 10.1086/509497 | accessdate = 2012-11-08|arxiv = astro-ph/0609779 |bibcode = 2007ApJ...654.1110T }}</ref>。 == 符合'接近'比率的平均運動 == [[File:PallasJupiter.GIF|300px|thumb|描繪的是在旋轉框架中[[小行星2|(2)智神星]]與木星之間接近18:7的共振(點擊觀看動畫)。木星(在左上角的粉紅色橢圓環)平穩的類似固定不動。智神星軌道的漂移與木星對正的方隨著時間改變;它沒有反轉的路徑(也就是說沒有天秤動)。]] [[File:Venus pentagram.png|300px|thumb|描繪的是[[地球]]:[[金星]]接近8:13的共振。地球被固定在非旋轉框架圖的中心,連續追蹤金星的[[內合]]超過8個地球年,反映出[[五角星]]的模式(數值的比率不同反射出的模式也就不同)。]] [[File:Moons of Pluto.png|thumb|300px|描繪出[[冥王星]]較外面4顆小衛星的軌道,它們遵循著3:4:5:6的序列,相對於最大的衛星[[冥衛一|卡戎]]的週期有著近共振。]] 在行星或主要衛星之間的軌道頻率有時會指出有接近[[整數]]數值的比率關係(見下面的清單)。然而,這並沒有任何動力學上的意義,因為沒有適當的[[近日點]]進動或其它振動使共振更為完美(詳細的討論參見前[[軌道共振#在太陽系的平均運動共振|節]]的敘述)。即使這種不匹配相當的小(不同于真正的共振),這種接近共振的動態還是無意義的,因為在每個周期後,這些天體的相對位置還是會偏移。在天文學的短時間尺度平均值,它們相對的位置是隨機的,就像完全不靠近共振狀態的機構。例如,考慮地球和金星的軌道,它們在金星公轉13週和地球公轉8週之後,又配置在軌道上幾乎相同的對位置上。正確的比率是0.61518624,和精確的8:13只有0.032%的偏差。在8年後,金星在軌道位置上的偏移只有的1.5°。不過,這依然可以讓金星和地球經過120個循環後,也就是960年後,發現彼此在對面的位置上。因此,在數千年或更長時間尺度上(以天文學的標準仍然很小),它們的相對位置實質上依然是隨機的。 近共振的存在可能會反映出在過去存在著一個完美的共振,或是系統正朝向完美的共振來演進。 一些軌道頻率的巧合包括: {| align="center" class="wikitable" |- !(比率)和天體 !! 一個循環後的偏差{{refn | Mismatch in orbital longitude of the inner body, as compared to its position at the beginning of the cycle(with the cycle defined as ''n'' orbits of the outer body – see below). Circular orbits are assumed(i.e., precession is ignored). | group = lower-alpha }}!! 隨機化時間{{refn | The time needed for the mismatch from the initial relative longitudinal orbital positions of the bodies to grow to 180°, rounded to the nearest first [[significant digit]].| group = lower-alpha }}!! 或然率{{refn | The [[probability]] of obtaining an orbital coincidence of equal or smaller mismatch by chance at least once in ''n'' attempts, where ''n'' is the integer number of orbits of the outer body per cycle, and the mismatch is assumed to vary between 0° and 180° at random. The value is calculated as 1-(1- mismatch/180°)^''n''. The smaller the probability, the more remarkable the coincidence. This is a crude calculation that only attempts to give a rough idea of relative probabilities.| group = lower-alpha }} |- !colspan="4" | ''行星'' |- |(9:23)[[金星]]−[[水星]] || 4.0° || 200 [[年|y]] || 0.19 |- |(8:13)[[地球]]−[[金星]]<ref name = "Langford"/><ref name=Bazsó> {{cite journal |last1=Bazsó |first1=A. |last2=Eybl |first2=V. |last3=Dvorak |first3=R. |last4=Pilat-Lohinger |first4=E. |last5=Lhotka |first5=C. |year=2010 |title=A survey of near-mean-motion resonances between Venus and Earth |journal=[[Celestial Mechanics and Dynamical Astronomy]] |volume=107 |issue=1 |pages=63–76 |arxiv=0911.2357 |bibcode=2010CeMDA.107...63B |doi=10.1007/s10569-010-9266-6 |s2cid=117795811 }}</ref>{{refn | The two near [[Commensurability (astronomy)|commensurabilities]] listed for Earth and Venus are reflected in the timing of [[Transit of Venus|transits of Venus]], which occur in pairs 8 years apart, in a cycle that repeats every 243 years.<ref name = "Langford">{{cite web | last = Langford | first = Peter M. | authorlink = | title = Transits of Venus | work = [http://www.astronomy.org.gg/ La Société Guernesiaise Astronomy Section web site] | publisher = Astronomical Society of the Channel Island of Guernsey | date = September 1998 | url = http://www.astronomy.org.gg/venustransitsb.htm | accessdate = 2012-03-01 | archive-url = https://web.archive.org/web/20120111153545/http://www.astronomy.org.gg/venustransitsb.htm | archive-date = 2012-01-11 | dead-url = yes }}</ref><ref name = "Shortt">{{cite web |last=Shortt |first=David |title=Some Details About Transits of Venus |work=Planetary Society web site |publisher=[[The Planetary Society]] |date=22 May 2012 |url=http://www.planetary.org/blogs/guest-blogs/Some-Details-About-Transits-of-Venus.html |accessdate=22 May 2012 |archive-date=2012-06-07 |archive-url=https://web.archive.org/web/20120607075150/http://www.planetary.org/blogs/guest-blogs/Some-Details-About-Transits-of-Venus.html |dead-url=no }}</ref> | group = lower-alpha }} || 1.5° || 1000 [[年|y]] || 0.065 |- |(243:395)[[地球]]−[[金星]]<ref name = "Langford"/><ref name = "Shortt"/> || 0.8° || 50,000 [[年|y]] || 0.68 |- |(1:3)[[火星]]−[[金星]] || 20.6° || 20 y || 0.11 |- |(1:2)[[火星]]−[[地球]] || 42.9° || 8 y || 0.24 |- |(1:12)[[木星]]−[[地球]]{{refn | The near 1:12 resonance between Jupiter and Earth causes the [[Alinda family|Alinda asteroids]], which occupy (or are close to) the 3:1 resonance with Jupiter, to be close to a 1:4 resonance with Earth. | group = lower-alpha }} || 49.1° || 40 y || 0.28 |- |(2:5)[[土星]]–[[木星]]{{refn | This near resonance has been termed the ''[[Great Inequality]]''. It was first described by [[Pierre-Simon Laplace|Laplace]] in a series of papers published 1784–1789. | group = lower-alpha }}|| 12.8° || 800 y || 0.13 |- |(1:7)[[天王星]]−[[木星]] || 31.1° || 500 y || 0.18 |- |(7:20)[[天王星]]−[[土星]] || 5.7° || 20,000 y || 0.20 |- |(5:28)[[海王星]]−[[土星]] || 1.9° || 80,000 y || 0.052 |- |(1:2)[[海王星]]−[[天王星]] || 14.0° || 2000 y || 0.078 |- !colspan="4" | ''火星系統'' |- |(1:4)[[火衛二|Deimos]]−[[火衛一|Phobos]] || 14.9° || 0.04 y || 0.083 |- !colspan="4" | ''主要的小行星'' |- |(1:1)[[智神星]]− [[穀神星]]<ref name="Goffin2001">{{cite journal |last=Goffin |first=E. |title=New determination of the mass of Pallas |journal=Astronomy and Astrophysics |year=2001 |volume=365 |issue=3 |pages=627–630 |bibcode=2001A&A...365..627G |doi=10.1051/0004-6361:20000023 }}</ref><ref name="Kovačević">{{cite journal |last= Kovačević |first= A. B. |title= Determination of the mass of Ceres based on the most gravitationally efficient close encounters |journal= [[Monthly Notices of the Royal Astronomical Society]] |date= 2011-12-05 | volume=419 | issue=3 | pages=2725–2736 | bibcode=2012MNRAS.419.2725K | doi=10.1111/j.1365-2966.2011.19919.x |arxiv = 1109.6455 }}</ref> || 1.2° || 700 y || 0.0066 |- |(7:18)[[木星]]− [[智神星]]<ref name=Taylor1982>{{cite journal |last=Taylor |first=D. B. |title=The secular motion of Pallas |journal=Royal Astronomical Society |volume=199 |pages=255–265 |year=1982 |bibcode=1982MNRAS.199..255T }}</ref> || 4.1° || 4000 y || 0.15 |- !colspan="4" | ''[[小行星87|(87)Sylvia]]系統''{{refn | [[87 Sylvia]] is the first asteroid discovered to have more than one moon. | group = lower-alpha }} |- |(17:45)[[Romulus (moon)|Romulus]]−[[Remus (moon)|Remus]] || 0.7° || 40 y || 0.067 |- !colspan="4" | ''木星系統'' |- |(1:6)[[木衛一|Io]]−[[木衛十六|Metis]] || 0.6° || 2 y || 0.0031 |- |(3:5)[[木衛五|Amalthea]]−[[木衛十五|Adrastea]] || 3.9° || 0.2 y || 0.064 |- |(3:7)[[木衛四Callisto (moon)|Callisto]]−[[木衛三Ganymede (moon)|Ganymede]]<ref name = "Goldreich_1965">{{cite journal | last = Goldreich | first = P. | authorlink = Peter Goldreich | title = An explanation of the frequent occurrence of commensurable mean motions in the solar system | journal = [[Monthly Notices of the Royal Astronomical Society]] | volume = 130 | issue = 3 | pages = 159–181 | year = 1965 | url = http://adsabs.harvard.edu/abs/1965MNRAS.130..159G | accessdate = 2012-11-07 | bibcode = 1965MNRAS.130..159G | archive-date = 2019-04-19 | archive-url = https://web.archive.org/web/20190419023334/http://adsabs.harvard.edu/abs/1965MNRAS.130..159G | dead-url = no }}</ref> || 0.7° || 30 y || 0.012 |- !colspan="4" | ''土星系統'' |- |(2:3)[[土衛二|Enceladus]]−[[土衛一|Mimas]] || 33.2° || 0.04 y || 0.33 |- |(2:3)[[土衛四|Dione]]−[[土衛三|Tethys]]{{refn | This resonance may have been occupied in the past.<ref name = "Chen2008"/> | group = lower-alpha }} || 36.2° || 0.07 y || 0.36 |- |(3:5)[[土衛五|Rhea]]−[[土衛四|Dione]] || 17.1° || 0.4 y || 0.26 |- |(2:7)[[土衛六|Titan]]−[[土衛五|Rhea]] || 21.0° || 0.7 y || 0.22 |- |(1:5)[[土衛八|Iapetus]]−[[土衛六|Titan]] || 9.2° || 4 y || 0.051 |- !colspan="4" | ''主要[[半人馬小行星]]''{{refn | Some [[Centaur (minor planet)#Classification|definitions of centaurs]] stipulate that they are nonresonant bodies. | group = lower-alpha }} |- |(3:4)[[天王星]]−[[小行星10199|(10199)Chariklo]] || 4.5° || 10,000 y || 0.073 |- !colspan="4" | ''天王星系統'' |- |(3:5)[[天衛十三|Rosalind]]−[[天衛六|Cordelia]]<ref name = "Murray_1990">{{cite journal |last = Murray |first = C. D. |authorlink = |coauthors = Thompson, R. P. |title = Orbits of shepherd satellites deduced from the structure of the rings of Uranus |journal = [[Nature (journal)|Nature]] |volume = 348 |issue = 6301 |pages = 499–502 |publisher = |date = 1990-12-06 |url = http://www.nature.com/nature/journal/v348/n6301/abs/348499a0.html |doi = 10.1038/348499a0 |accessdate = 2012-02-20 |bibcode = 1990Natur.348..499M |archive-date = 2013-12-31 |archive-url = https://web.archive.org/web/20131231000604/http://www.nature.com/nature/journal/v348/n6301/abs/348499a0.html |dead-url = no }}</ref> || 0.22° || 4 y || 0.0037 |- |(1:3)[[天衛二|Umbriel]]−[[天衛五|Miranda]]{{refn | This resonance may have been occupied in the past.<ref name = "Tittemore Wisdom 1990"/> | group = lower-alpha }} || 24.5° || 0.08 y || 0.14 |- |(3:5)[[天衛二|Umbriel]]−[[天衛一|Ariel]]{{refn | This resonance may have been occupied in the past.<ref name = "Tittemore1988"/> | group = lower-alpha }} || 24.2° || 0.3 y || 0.35 |- |(1:2)[[天衛三|Titania]]−[[天衛二|Umbriel]] || 36.3° || 0.1 y || 0.20 |- |(2:3)[[天衛四|Oberon]]−[[天衛三|Titania]] || 33.4° || 0.4 y || 0.34 |- !colspan="4" | ''海王星系統'' |- |(1:20)[[海衛一|Triton]]−[[海衛二|Naiad]] || 13.5° || 0.2 y || 0.075 |- |(1:2)[[海衛八|Proteus]]−[[海衛七|Larissa]]<ref name="ZhangHamilton2007">{{cite journal|last1=Zhang|first1=K.|last2=Hamilton|first2=D. P.|title=Orbital resonances in the inner neptunian system: I. The 2:1 Proteus–Larissa mean-motion resonance|journal=Icarus|volume= 188|issue=2|date=2007-06|pages= 386–399|issn= 00191035|doi= 10.1016/j.icarus.2006.12.002|bibcode = 2007Icar..188..386Z }}</ref><ref name="ZhangHamilton2008">{{cite journal|last1=Zhang|first1= K.|last2=Hamilton|first2=D. P.|title=Orbital resonances in the inner neptunian system: II. Resonant history of Proteus, Larissa, Galatea, and Despina|journal=Icarus|volume= 193|issue=1|date= 2008-01|pages=267–282|issn= 00191035|doi= 10.1016/j.icarus.2007.08.024|bibcode = 2008Icar..193..267Z }}</ref> || 8.4° || 0.07 y || 0.047 |- |(5:6)[[海衛八|Proteus]]−[[S/2004 N 1]] || 2.1° || 1 y || 0.057 |- !colspan="4" | ''冥王星系統'' |- |(1:3)[[冥衛五|Styx]]−[[冥衛一|Charon]]<ref name="Matson">{{cite web | last = Matson | first = J. | authorlink = | date = 11 July 2012 | title = New Moon for Pluto: Hubble Telescope Spots a 5th Plutonian Satellite | work = [[Scientific American]] web site | publisher = | url = http://www.scientificamerican.com/article.cfm?id=pluto-moon-p5 | accessdate = 12 July 2012 | archive-date = 2012-10-21 | archive-url = https://web.archive.org/web/20121021144023/http://www.scientificamerican.com/article.cfm?id=pluto-moon-p5 | dead-url = no }}</ref> || 58.5° || 0.2 y || 0.33 |- |(1:4)[[冥衛二|Nix]]−[[冥衛一|Charon]]<ref name="WardCanup2006">{{cite journal | first1 = William R.| last1 = Ward| first2 = Robin M.| last2 = Canup | year = 2006 | title = Forced Resonant Migration of Pluto's Outer Satellites by Charon | journal = Science | volume = 313 | issue = 5790 | pages = 1107–1109 | doi = 10.1126/science.1127293 | pmid = 16825533 | bibcode = 2006Sci...313.1107W}}</ref><ref name="Matson"/> || 39.1° || 0.3 y || 0.22 |- |(1:5)[[冥衛四|Kerberos]]−[[冥衛一|Charon]]<ref name="Matson"/> || 9.2° || 2 y || 0.05 |- |(1:6)[[冥衛三|Hydra]]−[[冥衛一|Charon]]<ref name="WardCanup2006"/><ref name="Matson"/> || 6.6° || 3 y || 0.037 |- !colspan="4" | ''妊神星系統'' |- |(3:8)[[姙衛一|Hi{{okina}}iaka]]−[[姙衛二)|Namaka]]{{refn | The results for the Haumea system aren't very meaningful because, contrary to the assumptions implicit in the calculations, Namaka has an eccentric, [[Osculating orbit|non-Keplerian]] orbit that precesses rapidly (see below). Hiʻiaka and Namaka are much closer to a 3:8 resonance than indicated, and may actually be in it.<ref name="Ragozzine&Brown2009"> {{cite journal |last=Ragozzine |first=D. |coauthors=Brown, M.E. |year=2009 |title=Orbits and Masses of the Satellites of the Dwarf Planet Haumea = 2003 EL61 |journal=The Astronomical Journal |arxiv=0903.4213 |bibcode = 2009AJ....137.4766R |doi = 10.1088/0004-6256/137/6/4766 |volume=137 |issue=6 |pages=4766–4776 }}</ref> | group = lower-alpha }} || 42.5° || 2 y || 0.55 |- |} {{reflist | group = lower-alpha }} 在清單中最值得關注(最不可能)的是木衛一(Io)和木衛十六(Metis)的軌道關係,其次是天衛十三(羅莎琳德,Rosalind)和天衛六(Cordelia,科迪)、智神星和穀神星、木衛四(Callisto)和木衛三(Ganymede)、以及冥衛三(Hydra)和冥衛一(Charon)。 == 相關條目 == *[[小行星1685|(1685)托羅]]:一顆與地球有著5:8共振的小行星。 *[[小行星3753|(3753)克魯特尼]]:與地球1:1共振的小行星。 *[[通约性 (天文学)]] *[[德莫特定律]] *[[馬蹄形軌道]]:以另一種1:1共振型態跟隨著的天體 *[[古在機制|古在共振]] *[[拉格朗日點]] *[[水星#自旋軌道共振|水星]]:3:2的自旋軌道共振 *[[音樂宇宙]]("music of the spheres") *[[共振海王星外天體]] *[[潮汐鎖定]] *[[潮汐共振]] *[[提丢斯-波得定则|提丟斯-波德定律]] *[[特洛伊天體]]:1:1共振型態的天體 == 参考文献 == === 引用 === {{Reflist}} === 书目 === * C. D. Murray, S. F. Dermott (1999). ''Solar System Dynamics'', Cambridge University Press, ISBN 978-0-521-57597-3. * Renu Malhotra ''Orbital Resonances and Chaos in the Solar System''. In ''Solar System Formation and Evolution'', ASP Conference Series, '''149'''(1998)[https://web.archive.org/web/20131211165545/http://www.lpl.arizona.edu/people/faculty/malhotra_preprints/rio97.pdf preprint]. * Renu Malhotra, ''The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune'', The Astronomical Journal, '''110'''(1995), p. 420 [http://arxiv.org/abs/astro-ph/9504036 Preprint] {{Wayback|url=http://arxiv.org/abs/astro-ph/9504036 |date=20160110075851 }}. *{{Cite book | last = Lemaître | first = A. | author-link = | title = Dynamics of Small Solar System Bodies and Exoplanets | editor-last = Souchay | editor-first = J. | editor2-last = Dvorak | editor2-first = R. | place = | publisher = [[Springer Science+Business Media|Springer]] | year = 2010 | volume = 790 | series = Lecture Notes in Physics | chapter = Resonances: Models and Captures | chapterurl = | pages = 1–62 | url = | archiveurl = | archivedate = | doi = 10.1007/978-3-642-04458-8 | isbn = 978-3-642-04457-1}} == 外部連結 == * [https://web.archive.org/web/20070322212846/http://www.alpheratz.net/murison/asteroids/resonances/ Locations of Solar System Planetary Mean-Motion Resonances]. Web calculator that plots distributions of the semimajor axes (or in one case the perihelion distances) of the minor planets in relation to mean-motion resonances of the planets(website maintained by M.A. Murison)。 {{DEFAULTSORT:Orbital Resonance}} [[Category:轨道共振| ]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Dead link
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Okina
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Refn
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:Webarchive
(
查看源代码
)
返回
轨道共振
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息