查看“︁肯普納級數”︁的源代码
←
肯普納級數
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''肯普納級數'''({{lang-en|Kempner series}})是[[十進制]]寫法不含數字9的正整數的[[倒數]]和。用符號可寫成 :<math> \sum_{\begin{smallmatrix}n=1 \\ n \text{缺 } 9\end{smallmatrix}}^\infty \frac{1}{n} _,</math> 其中「缺9」意思是「十進制表示中,不含數字9」,下同。{{link-en|奧伯利·肯普納|Aubrey J. Kempner}}於1914年最早研究該級數。<ref name="Kempner 1914"> {{cite journal | last = Kempner | first = A. J. | date= 1914-02 | title = A Curious Convergent Series | trans-title = 某稀奇的收斂級數 | jstor = 2972074 | journal = [[美國數學月刊|American Mathematical Monthly]] | volume = 21 | issue = 2 | pages = 48–50 | publisher = Mathematical Association of America | location = Washington, DC | issn = 0002-9890 | doi = 10.2307/2972074 | language = en }} </ref>肯普納級數是由[[調和級數]]刪走含數字9的項所得,但肯普納級數[[收斂]],調和級數則[[發散]]。肯普納證明,級數之和小於90。羅伯特·貝利<ref name = "Baillie 1979"/>證明,級數準確到小數點後20位的值為{{gaps|22.92067|66192|64150|34816}}{{OEIS|A082838}}。 直觀理解,級數收斂是因為大部分「大數」都有齊0至9的全部數字。例如,[[離散型均勻分佈|均勻隨機]]選一個100位的正整數,很易包含至少一個數字9,於是級數不計該數的倒數。 施梅爾策與貝利<ref name="Schmelzer and Baillie 2008"> {{cite journal | last1 =Schmelzer | first1 =Thomas | first2=Robert | last2=Baillie | date= 2008-06 | title = Summing a Curious, Slowly Convergent Series | trans-title = 求某稀奇而收斂得慢的級數和 | journal = [[美國數學月刊|American Mathematical Monthly]] | volume =115 | issue = 6 | pages = 525–540 | publisher = Mathematical Association of America | location = Washington, DC | issn = 0002-9890 | mr = 2416253 | jstor = 27642532 | language = en }}</ref>找到高效[[算法]],給定任意數字串為輸入,計算缺該串的正整數倒數和。此問題推廣了原本的級數求值問題。舉例,考慮所有缺數字串「42」的正整數<math>n</math>,其倒數和約為{{gaps|228.44630|41592|30813|25415}}。又舉例,缺數字串「314159」的正整數倒數和約為{{gaps|2302582.33386|37826|07892|02376}}。(上述數值皆四捨五入至末位。) == 命名 == 許多文獻中,級數未有命名。<ref>{{cite journal |journal = 南京工学院学报 |issue = 3 |year = 1985 |url = http://journal.seu.edu.cn/oa/darticle.aspx?type=view&id=198503012 |title = 调和级数的收敛子级数的和 |author1 = 赵显曾 |author2 = 冯世 |author3 = 程乃毅 |access-date = 2021-11-08 |archive-date = 2021-11-08 |archive-url = https://web.archive.org/web/20211108182653/http://journal.seu.edu.cn/oa/darticle.aspx?type=view&id=198503012 |dead-url = no }}</ref>[[MathWorld]]用{{lang|en|Kempner series}}為條目名。<ref>{{cite mathworld|title=Kempner series|urlname=KempnerSeries}}</ref>朱利安·哈維爾所著《伽瑪》(論[[歐拉-馬斯刻若尼常數]])亦採用同一名稱。<ref>{{cite book | last = Havil | first = Julian | title = Gamma: Exploring Euler's Constant | url = https://archive.org/details/gammaexploringeu0000havi | trans-title = 伽瑪:探索歐拉常數| publisher = Princeton University Press | location = Princeton | year = 2003 | isbn = 978-0-691-09983-5 |language = en}}</ref>{{Rp|31–33}} == 收斂 == 肯普納對數列收斂之證明<ref name="Kempner 1914" />,載於若干教科書,如[[戈弗雷·哈羅德·哈代|哈代]]與[[愛德華·梅特蘭·賴特|賴特]]合著《數論導論》<ref>{{cite book | author1-last = Hardy | author1-first = G. H. |author1-link = 戈弗雷·哈羅德·哈代| author2-first = E. M. |author2-last = Wright|author2-link = 愛德華·梅特蘭·賴特 | title = An Introduction to the Theory of Numbers |trans-title = 數論導論| publisher = Clarendon Press | location = Oxford | year = 1979 | edition = 5th | isbn = 0-19-853171-0 | url = https://archive.org/details/introductiontoth00hard |language = en}}</ref>{{Rp|120}},亦是[[湯姆·麥克·阿波斯托|阿波斯托]]《數學分析》的習題<ref>{{cite book | last = Apostol | first = Tom |author-link = 湯姆·麥克·阿波斯托| title = Mathematical Analysis | url = https://archive.org/details/mathematicalanal02edtomm |trans-title = 數學分析| publisher = Addison–Wesley | location = Boston | year = 1974 | isbn = 0-201-00288-4 |language = en}} 該書有中譯本:<br>{{cite book|title = 数学分析| publisher = 机械工业出版社 | author1 = Tom M. Apostol(著)| author2 = 邢富冲 |author3 = 邢辰 |author4 = 李松洁 |author5 = 贾婉丽(译)|isbn = 7-111-18014-3 | series = 华章数学译丛 |year = 2006}}</ref>{{Rp|212}}。證明如下。 將級數各項按分母的位數分組。由[[乘法原理]],缺「9」的<math>n</math>位正整數共有<math>8 \times 9^{n-1}</math>個,因為最高位有8個選擇(1至8,首位不為零),而其後<math>n - 1</math>位,每位有9種選擇(0至8),且各位的選擇互相獨立。任何<math>n</math>位數皆不小於<math>10^{n-1}</math>,故其倒數至多為<math>10^{1-n}</math>。所以,缺「9」的<math>n</math>位正整數之倒數,對級數的貢獻,至多是<math>8 \times \left(\frac{9}{10}\right)^{n-1}</math>。因此,將各組貢獻加總,全個級數至多為 :<math>8 \sum_{n=1}^\infty \left(\frac{9}{10}\right)^{n-1} = 80.</math> 若將禁止出現的「9」換成其他非零數字,則同樣的論證仍成立。至於缺「0」的情況,缺「0」的<math>n</math>位正整數共有<math>9^n</math>個,故缺「0」正整數的倒數和至多為: :<math>9 \sum_{n=1}^\infty \left(\frac{9}{10}\right)^{n-1} = 90.</math> 若刪去含有某串<math>k</math>位[[字串|子字串]]的項,例如忽略所有分母含子字串「42」的項,則級數同樣收斂。證明方法幾乎一樣<ref name="Schmelzer and Baillie 2008" />,先觀察在<math>10^k</math>進制中,刪去含有該字串為「位」的項,則前述證明適用,證出新級數收斂。但是,新級數比欲證收斂的級數更大,原因是欲證收斂的級數中,不僅刪走以該字串為<math>10^k</math>進制位的項,還刪走了跨<math>10^k</math>進制位而含該字串的項。接續前一個例子,百進制的新級數略過4217(百進制的首位是42)和1742(百進制的末位是42),但未略過1427,而欲證收斂的級數中,連1427也一併略去。 巴基爾·法喜<ref> {{cite journal | last = Farhi | first = Bakir |date=December 2008 | title = A Curious Result Related to Kempner's Series | url = https://archive.org/details/sim_american-mathematical-monthly_2008-12_115_10/page/933 | trans-title = 有關肯普納級數的稀奇結果 | journal = American Mathematical Monthly | volume = 115 | issue = 10 | pages = 933–938 | publisher = Mathematical Association of America | location = Washington, DC | issn = 0002-9890 | mr = 2468554 | bibcode = 2008arXiv0807.3518F | jstor = 27642640 | arxiv=0807.3518 | language = en }}</ref>研究恰有<math>n</math>個數字<math>d</math>(滿足<math>0\le d \le 9</math>)的正整數倒數和<math>S(d, n)</math>,此為肯普納級數的推廣,因為原級數即為<math>S(9,0)</math>。法喜證明,對每個<math>d</math>,數列<math>S(d, n)</math>由<math>n = 1</math>起取值遞減,且當<math>n</math>趨向無窮大時,收斂到<math>10 \ln 10</math>。不過,數列一般並非由<math>n = 0</math>起遞減,例如原級數值為<math>S(9,0) \approx 22.921 < 23.026 \approx 10 \ln 10</math>,比<math>n\ge 1</math>時任意一個<math>S(9, n)</math>更小。 == 數值方法 == 級數收斂得很慢。貝利<ref name="Baillie 1979" />寫道,即使計算前10<sup>24</sup>項和,其後餘項仍超過1。<ref name = "Bai79Errata"> {{cite journal | date=December 1980 | title = ERRATA | url=https://archive.org/details/sim_american-mathematical-monthly_1980-12_87_10/page/n89 | trans-title = 勘誤 | journal = American Mathematical Monthly | volume = 87 | issue = 10 | page = 866 | publisher = Mathematical Association of America | location = Washington, DC | issn = 0002-9890 | doi=10.2307/2320815 | language = en }}</ref> 80是很粗略的上界。弗蘭克·厄文較仔細地分析後<ref> {{cite journal | last = Irwin | first = Frank |date=May 1916 | title = A Curious Convergent Series | trans-title = 某稀奇的收斂級數 | jstor = 2974352 | journal = American Mathematical Monthly | volume = 23 | issue = 5 | pages = 149–152 | publisher = Mathematical Association of America | location = Washington, DC | issn = 0002-9890 | doi = 10.2307/2974352 | language = en }}</ref>,證明級數值接近23。此後,再由貝利改進到前述的22.92067…。<ref name="Baillie 1979" /> 貝利{{refn|name="Baillie 1979"|{{cite journal | last =Baillie | first =Robert | date= 1979-05 | title = Sums of Reciprocals of Integers Missing a Given Digit | url =https://archive.org/details/sim_american-mathematical-monthly_1979-05_86_5/page/372 | trans-title = 缺給定數字的整數倒數和 | jstor =2321096 | journal = American Mathematical Monthly | volume = 86 | issue = 5 | pages = 372–374 | publisher = Mathematical Association of America | location = Washington, DC | issn = 0002-9890 | doi =10.2307/2321096 | language = en }}經<ref name = "Bai79Errata"/>訂正。}}以<math>s(i, j)</math>表示缺某指定數字的所有<math>i</math>位正整數的<math>j</math>次方倒數和,然後推導出,只要有齊<math>s(i, j+n)</math>對所有非負整數<math>n</math>的值,就能[[遞歸關係|遞歸計算]]<math>s(i+ 1, j)</math>。於是,祗需較少的計算,已得到原級數<math>s(1, 1) + s(1, 2)+ \cdots </math>的準確估計。 == 參見 == * [[倒數和收斂]] * {{le|倒數和列表|List of sums of reciprocals}} == 參考文獻 == {{reflist}} [[Category:级数]] [[Category:数值分析]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite mathworld
(
查看源代码
)
Template:Gaps
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:OEIS
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Refn
(
查看源代码
)
Template:Rp
(
查看源代码
)
返回
肯普納級數
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息