查看“︁罗斯定理”︁的源代码
←
罗斯定理
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[几何学]]中,'''罗斯定理'''是关于[[三角形]][[面积]]的一个[[定理]]。给定一个三角形,在它的三边上各取一点,并和对面的[[頂點 (幾何)|顶点]]相连。三条连线将会在三角形中央围出一个新的小三角形。罗斯定理给出了这个新三角形的面积与三角形边上三个点的位置的关系。罗斯定理可以看成是[[塞瓦定理]]的一种推广。 ==历史== [[Image:rouths theorem.png|right|305px]] 这个定理最早由[[爱德华·约翰·罗斯]]于1896年在其著作《论解析静力学及例子》一书的第82页中提出<ref>{{en}}{{cite book|author=[[默里·S. 克拉姆金]] |title=Three more proofs of Routh's theorem|publisher=''Crux Mathematicorum'' 7 (1981) 199–203}}</ref>。当<math> x = y = z = 2</math>时,结论就是所谓的'''[[罗斯定理#七分三角形|七分三角形]]'''。 ==定理描述== 设有一个三角形<math>ABC</math>,而<math>D</math>、<math>E</math> 与 <math>F</math> 分别是三角形的三条边 <math>BC</math>、<math>CA</math>和<math>AB</math>上的点。如果设 <math>BD = a</math>、<math>CE = b</math>、<math> AF = c</math>,以及<math>\tfrac{CD}{BD} </math><math>= x</math>、<math>\tfrac{AE}{CE} </math><math>= y</math>、 <math>\tfrac{BF}{AF} </math><math>= z</math>,那么右图中红色的小三角形<math>\scriptstyle PQR</math>的[[面积]]占三角形<math>ABC</math>面积的比例就是: : <math>\frac{(xyz - 1)^2}{(xz + x + 1)(yx + y + 1)(zy + z + 1)}</math> 这个三角形<math>\scriptstyle PQR</math>是由[[线段]]<math>AD</math>、<math>BE</math>和<math>CF</math>围出来的,或者可以看成将三角形<math>ABC</math>沿着<math>BD</math>、<math>CE </math>、<math> AF</math>剪裁而剩下的三角形。 当<math>BD</math>、<math>CE </math>、<math> AF</math>三线交于一点,那么由三角形面积为0可以推出<math>xyz=1</math>,这时就得到[[塞瓦定理]]。反过来如果<math>xyz=1</math>时,中间的三角形面积为0,也就是说<math>BD</math>、<math>CE </math>、<math> AF</math>三线交于一点,因此得出塞瓦定理的逆定理。 ==证明== 设三角形<math>ABC</math> 面积为1。对三角形<math>ABD</math> 以及直线<math>FRC</math> 使用[[梅涅劳斯定理]],得到: :<math>\frac{AF}{FB} \times \frac{BC}{CD} \times \frac{DR}{RA} = 1</math> :因此<math>\frac{DR}{RA} = \frac{BF}{FA} \frac{DC}{CB} = \frac{zx}{x+1}</math> :于是三角形<math>ARC</math> 的面积: :<math>S_{ARC} = \frac{AR}{AD} S_{ADC} = \frac{AR}{AD} \frac{DC}{BC} S_{ABC} = \frac{x}{zx+x+1}</math> :同理可得<math>S_{BPA} = \frac{y}{xy+y+1}</math> 和 <math>S_{CQB} = \frac{z}{yz+z+1}</math> 于是三角形<math>PQR</math> 的面积: :<math>\displaystyle S_{PQR} = S_{ABC} - S_{ARC} - S_{BPA} - S_{CQB} </math> :<math>= 1 - \frac{x}{zx+x+1} - \frac{y}{xy+y+1} - \frac{z}{yz+z+1} </math> : <math>=\frac{(xyz - 1)^2}{(xz + x + 1)(yx + y + 1)(zy + z + 1)}.</math> ==七分三角形== 当<math>x = y = z = 2</math>时,D、E、F三点便是三角形<math>ABC</math>三条边的三等分点。由罗斯定理可以算出围成的小三角形<math>PQR</math> 的面积是原来三角形<math>ABC</math> 面积的七分之一。简单来说,就是: :如果将三角形的顶点和对边的三等分点连线,那么沿线剪裁后剩下的小三角形的面积是原来的七分之一。 这里所取的三等分点必须是“同向”的,即是说不能有两点同时“更靠近”同一个顶点。 根据R.J. 库克和G.V.伍德的回忆,某次在[[康奈尔大学]]的研讨会结束后的晚宴上,有人曾经向[[物理学家]][[理查德·费曼]]提出过这个问题。费曼几乎把所有的晚宴时间都花在证明这个命题不成立上面,但最后还是证出它是正确的<ref>R.J. Cook & G.V. Wood (2004), ''Feynman's Triangle'', ''Mathematical Gazette'' 88:299–302.</ref>。因此这个面积为原三角形面积七分之一的三角形有时也被叫作“'''费曼三角形'''”<ref>[http://math.kennesaw.edu/~mdevilli/feynman.html Feyman's Triangle]{{dead link|date=2018年4月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>。 == 参考来源 == {{Reflist}} * {{en}}{{cite book|author=[[H.S.M.考克瑟特]] |title=''Introduction to Geometry''|publisher=Wiley, New York, 1969,第二版}} * {{en}}{{cite book|author=J.S.克莱因, D.威尔曼 |title=Yet another proof of Routh's theorem |publisher=''Crux Mathematicorum'' 21 (1995) 37–40}} * ''[http://demonstrations.wolfram.com/RouthsTheorem/ Routh's Theorem] {{Wayback|url=http://demonstrations.wolfram.com/RouthsTheorem/ |date=20190806224146 }},'' Jay Warendorff, [[沃夫兰证明计划]]. * {{MathWorld |title=罗斯定理 |urlname=RouthsTheorem}} *Hugo Steinhaus (1960) ''Mathematical Snapshots'' *James Randi (2001) [http://www.randi.org/jr/02-09-2001.html Proof by Martin Gardner] {{Wayback|url=http://www.randi.org/jr/02-09-2001.html |date=20060427055758 }} *R.J. Cook & G.V. Wood (2004) ''Feynman's Triangle'' Mathematical Gazette 88:299–302. *Michael de Villiers (2005) [http://mysite.mweb.co.za/residents/profmd/feynman.pdf ''Feynman's Triangle: Some Feedback and More''] {{Wayback|url=http://mysite.mweb.co.za/residents/profmd/feynman.pdf |date=20160303183522 }} Mathematical Gazette 89:107. [[Category:几何定理]] [[Category:三角形几何]] [[Category:面积]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Dead link
(
查看源代码
)
Template:En
(
查看源代码
)
Template:MathWorld
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
罗斯定理
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息