查看“︁纽厄尔-怀特海德方程”︁的源代码
←
纽厄尔-怀特海德方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''纽厄尔-怀特海德方程'''(Newell-Whitehead equation)是一个非线性偏微分方程<ref>{{Cite web |url=http://eqworld.ipmnet.ru/en/solutions/npde/npde-toc1.htm |title=Newell--Whitehead equation |access-date=2014-01-25 |archive-date=2019-07-18 |archive-url=https://web.archive.org/web/20190718113336/http://eqworld.ipmnet.ru/en/solutions/npde/npde-toc1.htm |dead-url=no }}</ref>: <math>u_{t}-u_{xx}-\alpha*u+beta*u^3=0</math> ==行波解== 纽厄尔-怀特海德方程有行波解: :<math>u(x, t) = 1/\sqrt(\beta)</math>, :<math>u(x, t) = -1/\sqrt(\beta)</math>, :<math>u(x, t) = -(1/2*I)/\sqrt(-\beta)-(1/2)*cot(_C1-(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = -(1/2*I)/\sqrt(-\beta)+(1/2)*cot(_C1-(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = -(1/2*I)/\sqrt(-\beta)-(1/2)*cot(_C1+(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = -(1/2*I)/\sqrt(-\beta)+(1/2)*cot(_C1+(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = -(1/2*I)/\sqrt(-\beta)+(1/2)*tan(_C1-(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = -(1/2*I)/\sqrt(-\beta)-(1/2)*tan(_C1-(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = -(1/2*I)/\sqrt(-\beta)+(1/2)*tan(_C1+(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = -(1/2*I)/\sqrt(-\beta)-(1/2)*tan(_C1+(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = (1/2*I)/\sqrt(-\beta)+(1/2)*cot(_C1-(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = (1/2*I)/\sqrt(-\beta)-(1/2)*cot(_C1-(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = (1/2*I)/\sqrt(-\beta)+(1/2)*cot(_C1+(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = (1/2*I)/\sqrt(-\beta)-(1/2)*cot(_C1+(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = (1/2*I)/\sqrt(-\beta)-(1/2)*tan(_C1-(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, :<math>u(x, t) = (1/2*I)/\sqrt(-\beta)+(1/2)*tan(_C1-(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = (1/2*I)/\sqrt(-\beta)-(1/2)*tan(_C1+(1/4*I)*\sqrt(2)*x-(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = (1/2*I)/\sqrt(-\beta)+(1/2)*tan(_C1+(1/4*I)*\sqrt(2)*x+(3/4*I)*t)/\sqrt(-\beta)</math>, : <math>u(x, t) = -1/(2*\sqrt(\beta))+(1/2)*coth(_C1-(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = -1/(2*\sqrt(\beta))-(1/2)*coth(_C1-(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = -1/(2*\sqrt(\beta))+(1/2)*coth(_C1+(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = -1/(2*\sqrt(\beta))-(1/2)*coth(_C1+(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, : <math>u(x, t) = -1/(2*\sqrt(\beta))+(1/2)*tanh(_C1-(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, : <math>u(x, t) = -1/(2*\sqrt(\beta))-(1/2)*tanh(_C1-(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = -1/(2*\sqrt(\beta))+(1/2)*tanh(_C1+(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = -1/(2*\sqrt(\beta))-(1/2)*tanh(_C1+(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))-(1/2)*coth(_C1-(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))+(1/2)*coth(_C1-(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))-(1/2)*coth(_C1+(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, : <math>u(x, t) = 1/(2*\sqrt(\beta))+(1/2)*coth(_C1+(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))-(1/2)*tanh(_C1-(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))+(1/2)*tanh(_C1-(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))-(1/2)*tanh(_C1+(1/4)*\sqrt(2)*x-(3/4)*t)/\sqrt(\beta)</math>, :<math>u(x, t) = 1/(2*\sqrt(\beta))+(1/2)*tanh(_C1+(1/4)*\sqrt(2)*x+(3/4)*t)/\sqrt(\beta)</math></math> ==行波图== {{Gallery |width=250 |height=200 |align=center |File:Newell-Whitehead equation traveling wave plot4.gif| |File:Newell-Whitehead equation traveling wave plot7.gif| |File:Newell-Whitehead equation traveling wave plot9.gif| |File:Newell-Whitehead equation traveling wave plot3.gif| |File:Newell-Whitehead equation traveling wave plot21.gif| |File:Newell-Whitehead equation traveling wave plot23.gif| |File:Newell-Whitehead equation traveling wave plot24.gif| |File:Newell-Whitehead equation traveling wave plot25.gif| |File:Newell-Whitehead equation traveling wave plot26.gif| |File:Newell-Whitehead equation traveling wave plot31.gif| }} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]]
该页面使用的模板:
Template:Cite web
(
查看源代码
)
Template:Gallery
(
查看源代码
)
Template:非线性偏微分方程
(
查看源代码
)
返回
纽厄尔-怀特海德方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息