查看“︁米塔-列夫勒函数”︁的源代码
←
米塔-列夫勒函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Mittag-Leffler function 2D plot.gif|thumb|Mittag-Leffler function 2D plot]] [[File:Mittag-Leffler function Imaginary 3D plot1.gif|thumb|Mittag-Leffler function Imaginary 3D plot1]] [[File:Mittag-Leffler function Imaginary 3D plot2.gif|thumb|Mittag-Leffler function Imaginary 3D plot2]] '''米塔-列夫勒函数'''(Mittag-Leffler function)是一个特殊函数,常用于[[分数微积分]]方程,定义如下 <math>E_{a,b}(z)=\sum_{k=0}^{\infty}\frac{z^k}{\Gamma(ak+b)}</math> ==特例== 对应 <math>a=0,1/2,1,2</math> 有 :<math>E_{0,1}(z) = \sum_{k=0}^\infty z^k = \frac{1}{1-z}.</math> [[指数函数]]: :<math>E_{1,1}(z) = \sum_{k=0}^\infty \frac{z^k}{\Gamma (k + 1)} = \sum_{k=0}^\infty \frac{z^k}{k!} = \exp(z).</math> [[误差函数]]: :<math>E_{1/2,1}(z) = \exp(z^2)\operatorname{erfc}(-z).</math> [[双曲余弦]]: :<math>E_{2,1}(z) = \cosh(\sqrt{z}).</math> 对应 <math>a=0,1,2</math>, : :<math>\int_0^{z}E_{\alpha,1}(-s^2){\mathrm d}s</math> 有下列积分式 :<math>\arctan(z)</math>, :<math>\tfrac{\sqrt{\pi}}{2}\operatorname{erf}(z)</math>, :<math>\sin(z)</math>. ==参考文献== <references/> * Mittag-Leffler, M.G.: Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 137, 554–558 (1903) * Mittag-Leffler, M.G.: Sopra la funzione E˛.x/. Rend. R. Acc. Lincei, (Ser. 5) 13, 3–5 (1904) * [http://www.springer.com/gp/book/9783662439296 Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications (Springer, New York, 2014)] {{Wayback|url=http://www.springer.com/gp/book/9783662439296 |date=20180326112951 }} 443 pages ISBN 978-3-662-43929-6 *{{dlmf|first=F. W. J. |last=Olver|authorlink1=Frank W. J. Olver|first2=L. C. |last2=Maximon|id=10.46}} * {{cite book|title=Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications|series=Mathematics in Science and Engineering|author=Igor Podlubny|publisher=Academic Press|year=1998|isbn=0-12-558840-2|chapter=chapter 1}} * {{cite book|author=Kai Diethelm|title=The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type|location=Heidelberg and New York|publisher=Springer-Verlag|year=2010|series=Lecture notes in mathematics|isbn=978-3-642-14573-5|chapter=chapter 4}} [[Category:特殊函数]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Dlmf
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
米塔-列夫勒函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息