查看“︁立方體半形”︁的源代码
←
立方體半形
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{distinguish|超半方形}} {{Infobox polyhedron | name = 立方體半形 | polyhedron = 立方體半形 | imagename = Hemicube.svg | original = [[立方體]] ([[多面體半形|半形體]]) | en_name=hemicube | Type = {{en-link|抽象多胞形|Abstract polytope}}<br/>{{en-link|射影多面體|projective polyhedron}} | Coxeter_diagram = | Face = 3 | Edge = 6 | Vertice = 4 | Genu = | Face_type = 正方形 | Vertice_type = 4.4.4 | Vertice_configuration = | Schläfli = {4,3}/2<br/>{4,3}<sub>3</sub> | Wythoff = | Face_configuration = | Conway = | Symmetry_group = ''S''<sub>4</sub>, 24階 | Index_references = | dual = [[八面體半形]]<ref name= "Regular Map Petrial tetrahedron"/> | Rotation_group = | Dihedral_angle = | Properties = [[可定向性|不可定向]]、 [[歐拉示性數]]為1 | 3d_image = | vfigimage = Cube_vertfig.png | dual_image = Hemi-octahedron2.png | net_image = }} 在抽象[[幾何學]]中,'''立方體半形'''是一種僅由一半數量的[[立方體]]面構成的抽象多面體。這個抽象多面體與立方體類似,它們的每個頂點都是3個正方形的公共頂點,然而立方體有6個面,而立方體半形僅有3個面;同時,這個立體無法嵌入在三維歐幾里得空間中<ref name="Mark Mixer 2009">{{Cite web | url=http://mathserver.neu.edu/~ramras/Tapas/MixerNotes09.pdf | title=Introduction to abstract polytopes | author=Mark Mixer | date=2009-05-19 | publisher=Northeastern University | access-date=2021-07-31 | archive-date=2021-08-06 | archive-url=https://web.archive.org/web/20210806085418/http://mathserver.neu.edu/~ramras/Tapas/MixerNotes09.pdf }}</ref>。在拓樸學上,其可以視為[[正四面體]]的[[皮特里對偶]]<ref name="phdthesis pellicer2007graficas">{{Citation |title=Gráficas cpr y polytopos abstractos regulares |author=Pellicer, D |year=2007 |publisher=Universidad Nacional Autónoma de México, Mexico City, Mexico |url=https://www.matem.unam.mx/~roli/docencia/tesis/Thesis_Daniel.pdf |accessdate=2021-07-31 |archive-date=2021-08-06 |archive-url=https://web.archive.org/web/20210806085213/https://www.matem.unam.mx/~roli/docencia/tesis/Thesis_Daniel.pdf }}</ref>。 == 性質 == 立方體半形由3個[[面 (幾何)|面]]、6條[[邊 (幾何)|邊]]和4個[[頂點 (幾何)|頂點]]組成,每個面都是[[正方形]],且每個頂點都是3個正方形的公共頂點,在施萊夫利符號中可以用{4,3}/2或{4,3}<sub>3</sub>來表示,其中{4,3}代表且每個頂點都是3個正方形的公共頂點<ref name="article sequin2007hyperseeing">{{Cite journal |title=Hyperseeing the regular Hendecachoron |author=Séquin, Carlo H and Lanier, Jaron |journal=Proc ISAMA |pages=159–166 |year=2007 |url=http://graphics.berkeley.edu/papers/Sequin-HRH-2007-05/ |access-date=2021-08-04 |archive-date=2021-08-04 |archive-url=https://web.archive.org/web/20210804075509/http://graphics.berkeley.edu/papers/Sequin-HRH-2007-05/ }}</ref>,然而{4,3}代表正常的立方體,即[[正六面體]],因此用[[除以二|「/2」]]符號來表示所有元素都僅有立方體的一半數量<ref name="article hartley2003classification">{{Cite journal |title=The Classification of Rank 4 Locally Projective Polytopes and Their Quotients |author=Hartley, Michael I |journal=arXiv preprint math/0310429 |url=https://arxiv.org/pdf/math/0310429.pdf |year=2003 |access-date=2021-07-31 |archive-date=2021-08-06 |archive-url=https://web.archive.org/web/20210806090202/https://arxiv.org/pdf/math/0310429.pdf }}</ref><ref name="Abstract Regular Polytopes 2002">{{citation | last1 = McMullen | first1 = Peter | first2 = Egon | last2 = Schulte | chapter = 6C. Projective Regular Polytopes | title = Abstract Regular Polytopes | edition = 1st | publisher = Cambridge University Press | isbn = 0-521-81496-0 |date=December 2002 | pages = [https://books.google.com/books?id=JfmlMYe6MJgC&pg=PA162 162–165] }}</ref>。 :[[File:Hemicube.png|250px]] 立方體半形的對偶多面體為[[正八面體半形]],這個在更高維度的類比結構中同樣成立,即<math>n+1</math>維超方形半形([[施萊夫利符號]]:<math>{\left\{4,3^{n-1}\right\} }_{n+1}</math>)的對偶多胞形為<math>n+1</math>維正軸形半形(施萊夫利符號:<math>{\left\{3^{n-1},4\right\} }_{n+1}</math>)。<ref name="article hartley2003classification"/><ref name="Abstract Regular Polytopes 2002"/> 特別地,這個立體的每個面皆與相鄰面共用2條邊,且每個面都包含了立體中所有頂點。一般而言,多胞形的面可以透過其點集來決定<ref name="article kaibel2002computing">{{Cite journal |title=Computing the face lattice of a polytope from its vertex-facet incidences |author=Kaibel, Volker and Pfetsch, Marc E |journal=Computational Geometry |volume=23 |number=3 |pages=281–290 |year=2002 |url=https://www2.mathematik.tu-darmstadt.de/~pfetsch/Publications/facelattice.pdf |publisher=Elsevier |access-date=2021-07-31 |archive-date=2021-08-06 |archive-url=https://web.archive.org/web/20210806085343/https://www2.mathematik.tu-darmstadt.de/~pfetsch/Publications/facelattice.pdf }}</ref>,也就是說,一般不會存在2個相異面點集合相同的情況,因此這個立體是面無法僅從點集來確定的抽象多面體的例子之一。 :[[File:Tetrahedron 3 petrie polygons.png|160px]] === 構造 === 立方體半形可從有公共頂點的半個立方體(即三個面,下圖的I、II、III)開始構造。此形狀的邊界為一個六邊形,然後下一步是將此六條邊分成三組對邊(下圖的4、5、6),將每對邊(沿同一方向,例如順時針)黏合,就得到立方體半形<ref name="article sequin2007hyperseeing"/>。這樣的構建方式使用了正四面體的骨架<ref name="Carlo H. Séquin">{{Cite web | url=https://people.eecs.berkeley.edu/~sequin/SCULPTS/sequin.html | title=Sculpture designs and math models | author=Carlo H. Séquin | publisher=University of California, Berkeley | quote=[http://people.eecs.berkeley.edu/%7Esequin/SCULPTS/CHS_miniSculpts/RibbedSculptures/Ribbed_HemiCube_A_.JPG "Ribbed Hemicube" (June 2007) - 5"] | access-date=2021-07-31 | archive-date=2021-10-22 | archive-url=https://web.archive.org/web/20211022032755/https://people.eecs.berkeley.edu/~sequin/SCULPTS/sequin.html }}</ref>,同時其構成的面不會共面<ref name="article sequin2007hyperseeing"/>,其與正四面體的皮特里多邊形相同,其骨架在圖論中對應到四面體圖,可以視為''K''<sub>4</sub>[[完全圖]]嵌入於[[射影平面]]上的結果。<ref name="article sequin2007hyperseeing"/> {| class="wikitable" width="300" |- align="center" | [[Image:Hemicube2.PNG|150px]]<br/>立方體半形 | [[Image:3-simplex_graph.svg|150px]]<br/>''K''<sub>4</sub>[[完全圖]] | [[Image:Petrial_tetrahedron.gif|150px]]<br/>皮特里四面體 |} === 具象化 === 立方體半形可被視為是{{En-link|射影多面體|projective polyhedron}} (可視為由三個[[四邊形]]構成的[[實射影平面]][[鑲嵌_(幾何學)|鑲嵌]])<ref name="phdthesis helfand2013constructions">{{Citation |title=Constructions of k-orbit Abstract Polytopes |author=Helfand, Ilanit |year=2013 |publisher=Northeastern University}}</ref>。要將其視覺化,可以透過將射影平面構築為一個半球體,並過半球體的邊界連接[[對蹠點]],同時確保連接的部分能將半球體平均分割成三等份。 立方體半形和[[超半方形|半立方體]]不同,立方體半形是一個{{En-link|射影多面體|projective polyhedron}},且無法嵌入在三維歐幾里得空間中<ref name="Mark Mixer 2009"/>;而半立方體是一個位於三維歐幾里德空間中的普通多面體。 雖然它們的頂點數皆為立方體的一半,立方體'''半形'''可以視為立方體的[[商空間]],而'''半'''立方體則不是,半立方體只有頂點為立方體頂點的[[子集]]。 == 皮特里四面體 == {{Infobox polyhedron | name = 皮特里四面體 | polyhedron = 皮特里四面體 | imagename = Petrial_tetrahedron.gif | caption = 以不同顏色表示每個面 | Type = 皮特里對偶<br/>[[正則地區圖]] | WikidataID = Q107723233 | Schläfli = {3,3}<sup>{{pi}}</sup><br/>{4,3}<sub>3</sub> | Face = 3 | Edge = 6 | Vertice = 4 | Symmetry_group = T<sub>d</sub>, [3,3], *332 | dual = [[八面體半形]] | Dihedral_angle = (不存在) | Properties = [[扭歪多邊形|扭歪]]、[[正則地區圖|正則]] }} 皮特里四面體是[[正四面體]]的[[皮特里對偶]]<ref name= "Regular Map Petrial tetrahedron">{{cite web | url = http://www.weddslist.com/rmdb/map.php?a=N1.1p | title = The hemicube | publisher = Regular Map database - map details | accessdate = 2021-07-24 | archive-date = 2019-05-02 | archive-url = https://web.archive.org/web/20190502092501/http://www.weddslist.com/rmdb/map.php?a=N1.1p }}</ref><ref name="Regular Map tetrahedron" >{{cite web | url = http://www.weddslist.com/rmdb/map.php?a=R0.1 | title = The tetrahedron | publisher = Regular Map database - map details | accessdate = 2021-07-24 | archive-date = 2021-08-23 | archive-url = https://web.archive.org/web/20210823170239/http://www.weddslist.com/rmdb/map.php?a=R0.1 }}</ref>。在拓樸學上,這個結構與立方體半形同構,並可以視為立方體半形的一種具象化方式<ref name="article sequin2007hyperseeing"/>。相對的立方體半形的皮特里對偶為[[正四面體]],這意味著其皮特里多邊形可以與[[超半方形|半立方體]](此例對應[[正四面體]])的面對應<ref name="article bracho2014finite">{{Cite journal |title=A Finite Chiral 4-Polytope in <math>\mathbb{R}^4</math> |author=Bracho, Javier and Hubard, Isabel and Pellicer, Daniel |journal=Discrete & Computational Geometry |volume=52 |number=4 |pages=799--805 |year=2014 |publisher=Springer}}</ref>。也就是說,立方體半形和正四面體互為[[皮特里對偶]]。<ref name= "Regular Map Petrial tetrahedron"/><ref name="Regular Map tetrahedron"/> 皮特里四面體由3個面、6條邊和4個頂點組成,其中,3個面皆為[[正四面體]]的[[皮特里多邊形]]。[[正四面體]]的[[皮特里多邊形]]是一個扭歪四邊形。<ref>{{citation|title=Geometry at Work|series=MAA Notes|volume=53|first=Catherine A.|last=Gorini|publisher=Cambridge University Press|year=2000|isbn=9780883851647|page=181|url=https://books.google.com/books?id=Eb6uSLa2k6IC&pg=PA181}}</ref>由於皮特里四面體由扭歪四邊形組成<ref>{{citation|title=Abstract Regular Polytopes|volume=92|series=Encyclopedia of Mathematics and its Applications|first1=Peter|last1=McMullen|first2=Egon|last2=Schulte|publisher=Cambridge University Press|year=2002|isbn=9780521814966|page=192|url=https://books.google.com/books?id=JfmlMYe6MJgC&pg=PA192}}</ref>,因此無法確立其封閉範圍,故無法計算其表面積和體積。<ref name="book barnard2014aro">{{Citation |title=Aro -- Healing Touching Lives -- Theories, Techniques and Therapies: The Techniques and Therapies of Aro-Healing |author=Barnard, L. |isbn=9781483631646 |url=https://books.google.com.tw/books?id=brZNBAAAQBAJ |year=2014 |publisher=Xlibris UK |accessdate=2021-07-31 |archive-date=2021-07-31 |archive-url=https://web.archive.org/web/20210731072011/https://books.google.com.tw/books?id=brZNBAAAQBAJ }}</ref> 皮特里四面體是一個不可定向且歐拉示性數為1的幾何結構<ref name= "Regular Map Petrial tetrahedron"/>。 {| class="wikitable" width="300" |- align=center | [[Image:Skeleton_4b,_Petrie,_stick,_size_m,_2-fold_square.png|150px]]<br/>[[正四面體]]的[[皮特里多邊形]] | [[Image:Face_of_petrial_tetrahedron.gif|150px]]<br/>構成皮特里立方體的[[扭歪四邊形]]面 |} 皮特里四面體的頂點、邊和面數皆為立方體的一半,因此皮特里四面體可以被立方體(的表面)[[覆疊空間|二重覆蓋]]<ref name= "Regular Map Petrial tetrahedron"/>。皮特里四面體的對偶多面體為[[八面體半形]]<ref name= "Regular Map Petrial tetrahedron"/>。皮特里四面體可以[[截半 (幾何)|截半]]為[[截半立方體半形]]<ref name= "Regular Map Petrial tetrahedron"/><ref name= "Regular Map Hemi-cuboctahedron" >{{cite web | url = http://www.weddslist.com/rmdb/map.php?a=Q1.1 | title = Hemi-cuboctahedron | publisher = Regular Map database - map details | accessdate = 2021-07-24 | archive-date = 2021-01-26 | archive-url = https://web.archive.org/web/20210126031706/http://www.weddslist.com/rmdb/map.php?a=Q1.1 }}</ref>。 {| class="wikitable" width="300" |- align=center | [[Image:Tetrahedron 3 petrie polygons.png|150px]]<br/>皮特里四面體 | [[Image:Hemicube.svg|150px]]<br/>以正則地區圖表示的皮特里四面體 | [[Image:Hemi-octahedron2.png|150px]]<br/>皮特里四面體的對偶多面體以正則地區圖表示 |} == 相關多面體 == 立方體半形是正多面體的半形體之一,其他也是正多面體的半形之結構有<ref name="Abstract Regular Polytopes 2002"/>: {| class="wikitable" width="300" |- align=center | [[Image:Hemicube.svg|150px]]<br/>'''立方體半形''' | [[Image:Hemi-octahedron2.png|150px]]<br/>[[八面體半形]] | [[Image:Hemi-dodecahedron.png|150px]]<br/>[[十二面體半形]] | [[Image:Hemi-icosahedron.png|150px]]<br/>[[二十面體半形]] |} 立方體半形與皮特里四面體拓樸同構,其可以視為是正多面體的皮特里對偶之一。其他也是正多面體的皮特里對偶之幾何結構有:<ref name= "Regular Map genus 0">{{cite web | url = http://www.weddslist.com/rmdb/man.php?m=o0 | title = Regular maps in the orientable surface of genus 0 | publisher = Regular Map database - map details | accessdate = 2021-07-31 | archive-date = 2021-10-19 | archive-url = https://web.archive.org/web/20211019042151/http://www.weddslist.com/rmdb/man.php?m=o0 }}</ref> {| class="wikitable" width="300" |- align=center | [[Image:Petrial_tetrahedron.gif|150px]]<br/>'''皮特里四面體''' | [[Image:Petrial_cube.gif|150px]]<br/>[[皮特里立方體]] | [[Image:Petrial_octahedron.gif|150px]]<br/>[[皮特里八面體]] | [[Image:Petrial_dodecahedron.gif|150px]]<br/>[[皮特里十二面體]] | [[Image:Petrial_icosahedron.gif|150px]]<br/>[[皮特里二十面體]] |} == 參考資料 == {{Reflist|2}} ==外部連結== * [http://www.weddslist.com/rmdb/map.php?a=N1.1p 立方體半形] {{Wayback|url=http://www.weddslist.com/rmdb/map.php?a=N1.1p |date=20190502092501 }} {{多面體半形}} [[Category:射影多面體]] [[Category:多面體半形]] [[Category:抽象正多面體]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Distinguish
(
查看源代码
)
Template:En-link
(
查看源代码
)
Template:Infobox polyhedron
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:多面體半形
(
查看源代码
)
返回
立方體半形
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息