查看“︁穩定流形定理”︁的源代码
←
穩定流形定理
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''穩定流形定理'''(stable manifold theorem)是[[數學]]定理,[[动力系统]]及[[微分方程]]有關,是有關趨近給定{{link-en|雙曲不動點|hyperbolic fixed point}}的{{link-en|軌道 (動力系統|Orbit (dynamics)|軌道}}集合之結構。 令 :<math>f: U \subset \mathbb{R}^n \to \mathbb{R}^n</math> 為[[光滑函数]],存在雙曲不動點<math>p</math>。令<math>W^{s}(p)</math>為<math>p</math>的[[穩定流形]],<math>W^{u}(p)</math>則為不穩定流形。 定理<ref>{{cite journal|last = Pesin|first = Ya B|title = Characteristic Lyapunov Exponents and Smooth Ergodic Theory|journal = Russian Mathematical Surveys|year = 1977|volume = 32|issue = 4|pages = 55–114|doi = 10.1070/RM1977v032n04ABEH001639|url = http://www.turpion.org/php/paper.phtml?journal_id=rm&paper_id=1639|accessdate = 2007-03-10|bibcode = 1977RuMaS..32...55P|archive-date = 2007-09-27|archive-url = https://web.archive.org/web/20070927104152/http://www.turpion.org/php/paper.phtml?journal_id=rm&paper_id=1639}}</ref><ref>{{cite journal|last = Ruelle|first = David|title = Ergodic theory of differentiable dynamical systems|journal = Publications Mathématiques de l'IHÉS|year = 1979|volume = 50|pages = 27–58|url = http://www.numdam.org/numdam-bin/item?h=nc&id=PMIHES_1979__50__27_0|accessdate = 2007-03-10|doi = 10.1007/bf02684768|archive-date = 2016-03-03|archive-url = https://web.archive.org/web/20160303173924/http://www.numdam.org/numdam-bin/item?h=nc&id=PMIHES_1979__50__27_0}}</ref><ref>{{cite book| last = Teschl| given = Gerald| title = Ordinary Differential Equations and Dynamical Systems| publisher = [[美國數學學會|American Mathematical Society]]| place = [[普罗维登斯|Providence]]| year = 2012| isbn = 978-0-8218-8328-0| url = http://www.mat.univie.ac.at/~gerald/ftp/book-ode/| access-date = 2020-02-19| archive-date = 2012-06-26| archive-url = https://web.archive.org/web/20120626043727/http://www.mat.univie.ac.at/~gerald/ftp/book-ode/| dead-url = yes}}</ref>提到 * <math>W^{s}(p)</math>為[[微分流形|光滑流形]],且[[切空间]]也和<math>f</math>在<math>p</math>點[[線性化]]的穩定空間(stable space)有相同維度。 * <math>W^{u}(p)</math>為光滑流形,且切空间也和<math>f</math>在<math>p</math>點線性化的不穩定空間(unstable space)有相同維度。 因此<math>W^{s}(p)</math>是[[穩定流形]],而<math>W^{u}(p)</math>是不穩定流形。 == 相關條目 == * [[中心流形定理]] * [[李亚普诺夫指数]] == 註解== <references responsive="0"/> == 參考資料 == *{{cite book |first=Lawrence |last=Perko |title=Differential Equations and Dynamical Systems |url=https://archive.org/details/differentialequa00perk_020 |location=New York |publisher=Springer |edition=Third |year=2001 |isbn=0-387-95116-4 |pages=[https://archive.org/details/differentialequa00perk_020/page/n119 105]–117 }} *{{cite book |first=S. S. |last=Sritharan |title=Invariant Manifold Theory for Hydrodynamic Transition |url=https://archive.org/details/invariantmanifol0000srit |location= |publisher=John Wiley & Sons |year=1990 |isbn=0-582-06781-2 }} == 外部連結 == *{{PlanetMath|title=StableManifoldTheorem|urlname=StableManifoldTheorem}} [[Category:动力系统]] {{技術小作品}}
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:PlanetMath
(
查看源代码
)
Template:技術小作品
(
查看源代码
)
返回
穩定流形定理
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息