查看“︁爱因斯坦-希尔伯特作用量”︁的源代码
←
爱因斯坦-希尔伯特作用量
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=物理學}} '''希尔伯特作用量'''或'''爱因斯坦-希尔伯特作用量'''(英文:{{lang|en|Einstein-Hilbert action}})是[[广义相对论]]中能够导出[[爱因斯坦引力场方程]](通过取[[变分法|变分]]得到[[时空]][[度规]]的[[运动方程]])的[[作用量]],它最早由[[希尔伯特]]在1915年提出。从希尔伯特作用量导出爱因斯坦引力场方程的优点是多方面的:首先,它能够简单地将广义相对论理论和其他同样用作用量形式表示的经典场论(如[[麦克斯韦方程组|麦克斯韦理论]]) 统一起来;其次,通过寻找这个作用量中包含的[[对称性 (物理学)|对称性]]可以轻易地根据[[诺特定理]]判别守恒量。在广义相对论中,作用量一般都被认为是度规(以及物质场)的一个[[泛函]],而其[[联络]]是[[列维-奇维塔联络]]。 能够导出真空中的爱因斯坦方程的作用量<math>S[g]\,</math>由下面的[[拉格朗日量]]的积分给出: :<math>S[g]= \int {1 \over 2\kappa} R \sqrt{-g} \, \mathrm{d}^4x </math> 其中<math>g = \, {1 \over c^2} \, \det \, (g_{\alpha \beta})</math>是时空的[[洛伦兹度规]]的[[行列式]],<math>R\,</math>是[[里奇数量曲率|里奇标量]],<math>\kappa = \frac{8 \pi G}{c^4} \,</math>是一个普适性常数,拉格朗日量是<math>{1 \over 2\kappa} R \sqrt{-g}</math>,积分范围是时空中的一块区域。对于有物质存在的爱因斯坦方程,在对应的拉格朗日量中还要添加物质本身的拉格朗日量。(注意:这里所谓“拉格朗日量”都是指其标量密度,在[[国际单位制]]中的单位是[[焦耳]]/立方米,而不是指其在空间或时空范围内的一个积分。) 注意到<math>\sqrt{-g} \, \mathrm{d}^4 x</math>是一个形式不变的四维体元,因此也可以将希尔伯特作用量写成(可能更好看些的)如下形式: :<math>S[g]= \int {1 \over 2\kappa} R \, \mathrm{dV} \,</math> == 导出爱因斯坦引力场方程 == 假设理论中场的完整作用量形式即包括爱因斯坦-希尔伯特作用量以及可描述任意物质场的拉格朗日量<math>\mathcal{L}_\mathrm{M}</math>,则有 :<math>S = \int \left[ {1 \over 2\kappa} \, R + \mathcal{L}_\mathrm{M} \right] \sqrt{-g} \, \mathrm{d}^4 x </math> 作用量原理告诉我们这个作用量对度规<math>g^{\mu\nu}\,</math>的变分为零: :<math> \begin{align} 0 & = \delta S \\ & = \int \left[ {1 \over 2\kappa} \frac{\delta (\sqrt{-g}R)}{\delta g^{\mu\nu}} + \frac{\delta (\sqrt{-g} \mathcal{L}_\mathrm{M})}{\delta g^{\mu\nu}} \right] \delta g^{\mu\nu}\mathrm{d}^4x \\ & = \int \left[ {1 \over 2\kappa} \left( \frac{\delta R}{\delta g^{\mu\nu}} + \frac{R}{\sqrt{-g}} \frac{\delta \sqrt{-g}}{\delta g^{\mu\nu} } \right) + \frac{1}{\sqrt{-g}} \frac{\delta (\sqrt{-g} \mathcal{L}_\mathrm{M})}{\delta g^{\mu\nu}} \right] \delta g^{\mu\nu} \sqrt{-g}\, \mathrm{d}^4x. \end{align} </math> 由于这个方程要求对所有变分<math>\delta g^{\mu\nu}</math>都成立,这意味着 :<math> \frac{\delta R}{\delta g^{\mu\nu}} + \frac{R}{\sqrt{-g}} \frac{\delta \sqrt{-g}}{\delta g^{\mu\nu}} = - 2 \kappa \frac{1}{\sqrt{-g}}\frac{\delta (\sqrt{-g} \mathcal{L}_\mathrm{M})}{\delta g^{\mu\nu}},</math> 是度规场的运动方程,而方程的右边则(根据定义)正比于能量-动量张量。 :<math> T_{\mu\nu}:= -2 \frac{1}{\sqrt{-g}}\frac{\delta (\sqrt{-g} \mathcal{L}_\mathrm{M})}{\delta g^{\mu\nu}} = -2 \frac{\delta \mathcal{L}_\mathrm{M}}{\delta g^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_\mathrm{M}.</math> 计算方程的左边需要得到里奇标量的变分和度规的行列式,它们的有关计算可以参考有关教科书,下面给出的范例来自{{Harvnb|Carroll|2004}}。 === 黎曼张量、里奇张量和里奇标量的变分 === 为计算[[里奇标量]]的变分我们首先考虑[[黎曼张量]]以及[[里奇张量]]的变分。黎曼张量的定义为 :<math> {R^\rho}_{\sigma\mu\nu} = \partial_\mu\Gamma^\rho_{\nu\sigma} - \partial_\nu\Gamma^\rho_{\mu\sigma} + \Gamma^\rho_{\mu\lambda}\Gamma^\lambda_{\nu\sigma} - \Gamma^\rho_{\nu\lambda}\Gamma^\lambda_{\mu\sigma},</math> 由于黎曼曲率只和[[列维-奇维塔联络]]<math> \Gamma^\lambda_{\mu\nu}</math>有关,黎曼张量的变分可由下给出: :<math>\delta{R^\rho}_{\sigma\mu\nu} = \partial_\mu\delta\Gamma^\rho_{\nu\sigma} - \partial_\nu\delta\Gamma^\rho_{\mu\sigma} + \delta\Gamma^\rho_{\mu\lambda} \Gamma^\lambda_{\nu\sigma} + \Gamma^\rho_{\mu\lambda} \delta\Gamma^\lambda_{\nu\sigma} - \delta\Gamma^\rho_{\nu\lambda} \Gamma^\lambda_{\mu\sigma} - \Gamma^\rho_{\nu\lambda} \delta\Gamma^\lambda_{\mu\sigma}.</math> 现在由于<math>\delta\Gamma^\rho_{\nu\mu}</math>是两个联络的差,因此它是一个张量,我们计算它的[[协变导数]]: :<math>\nabla_\lambda (\delta \Gamma^\rho_{\nu\mu} ) = \partial_\lambda (\delta \Gamma^\rho_{\nu\mu} ) + \Gamma^\rho_{\sigma\lambda} \delta\Gamma^\sigma_{\nu\mu} - \Gamma^\sigma_{\nu\lambda} \delta \Gamma^\rho_{\sigma\mu} - \Gamma^\sigma_{\mu\lambda} \delta \Gamma^\rho_{\nu\sigma} </math> 我们现在可以清楚地看到黎曼曲率张量的变分表达式等于如下两项的差: :<math>\delta R^\rho{}_{\sigma\mu\nu} = \nabla_\mu (\delta \Gamma^\rho_{\nu\sigma}) - \nabla_\nu (\delta \Gamma^\rho_{\mu\sigma}).</math> 而里奇张量的变分可简单地通过紧缩黎曼张量的变分表达式的两个分量得到: :<math> \delta R_{\mu\nu} \equiv \delta R^\rho{}_{\mu\rho\nu} = \nabla_\rho (\delta \Gamma^\rho_{\nu\mu}) - \nabla_\nu (\delta \Gamma^\rho_{\rho\mu}).</math> 里奇标量的定义为 :<math> R = g^{\mu\nu} R_{\mu\nu}.\!</math> 从而它相对于度规<math>g^{\mu\nu}</math>的变分为 :<math> \begin{align} \delta R &= R_{\mu\nu} \delta g^{\mu\nu} + g^{\mu\nu} \delta R_{\mu\nu}\\ &= R_{\mu\nu} \delta g^{\mu\nu} + \nabla_\sigma \left( g^{\mu\nu} \delta\Gamma^\sigma_{\nu\mu} - g^{\mu\sigma}\delta\Gamma^\rho_{\rho\mu} \right) \end{align} </math> 在第二行中我们使用了上面得到的里奇张量的变分结果以及协变导数对度规的性质<math>\nabla_\sigma g^{\mu\nu} = 0 </math>。 最后一项<math>\nabla_\sigma ( g^{\mu\nu} \delta\Gamma^\sigma_{\nu\mu} - g^{\mu\sigma}\delta\Gamma^\rho_{\rho\mu} ) </math>是一个[[全微分]],根据[[斯托克斯定理]]当对它进行积分时只能得到一个边界项。因而当度规的变分<math>\delta g^{\mu\nu}</math> 在无穷远处趋于零时这项的积分也为零,从而不对作用量有贡献。这样我们得到 :<math>\frac{\delta R}{\delta g^{\mu\nu}} = R_{\mu\nu}</math> === 度规行列式的变分 === 根据对[[行列式]]进行[[导数|求导]]的[[雅可比公式]] :<math>\,\! \delta g = g \, g^{\mu\nu} \delta g_{\mu\nu}</math> 我们得到 :<math>\begin{align} \delta \sqrt{-g} &= -\frac{1}{2\sqrt{-g}}\delta g = \frac{1}{2} \sqrt{-g} (g^{\mu\nu} \delta g_{\mu\nu}) = -\frac{1}{2} \sqrt{-g} (g_{\mu\nu} \delta g^{\mu\nu}),\end{align}</math> 从而结论为 :<math>\frac{1}{\sqrt{-g}}\frac{\delta \sqrt{-g}}{\delta g^{\mu\nu} } = -\frac{1}{2} g_{\mu\nu}</math> === 运动方程 === 我们得到了所需要的所有变分,将它们代入运动方程可得 :<math>R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8 \pi G}{c^4} T_{\mu\nu},</math> 这是[[爱因斯坦引力场方程]],其中<math>\kappa = \frac{8 \pi G}{c^4}</math>的选取是为了使非相对论极限能够满足[[万有引力定律|牛顿引力理论]]的形式,而<math>G\,</math>是[[万有引力常数]]。 == 宇宙学常数 == 对于含有[[宇宙常数项]]的爱因斯坦方程 :<math>R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R + \Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu} \,</math> 对应的希尔伯特作用量也包含宇宙学常数,写为 :<math>S = \int \left[ {1 \over 2\kappa} \left( R - 2 \Lambda \right) + \mathcal{L}_\mathrm{M} \right] \sqrt{-g} \, \mathrm{d}^4 x </math> == 相關條目 == * [[作用量]] == 参考文献 == *{{Citation |last=Carroll |first=Sean M. |year=2004 |title=Spacetime and Geometry |publisher=Addison Wesley |isbn=0-8053-8732-3 |url=http://spacetimeandgeometry.net |deadurl=yes |archiveurl=https://archive.today/20121209005119/http://spacetimeandgeometry.net/ |archivedate=2012-12-09 }} *Hilbert, D. (1915) [http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/relativity_rev/hilbert'' Die Grundlagen der Physik''] {{Wayback|url=http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/relativity_rev/hilbert |date=20081208080927 }}, Konigl. Gesell. d. Wiss. Gottingen, Nachr. Math.-Phys. Kl. 395-407 *{{springer|id=C/c026670|last=Sokolov |first=D.D. |title=Cosmological constant}} {{阿爾伯特·愛因斯坦}} [[Category:广义相对论|A]] [[Category:阿尔伯特·爱因斯坦]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Harvnb
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Springer
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:阿爾伯特·愛因斯坦
(
查看源代码
)
返回
爱因斯坦-希尔伯特作用量
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息