查看“︁火腿三明治定理”︁的源代码
←
火腿三明治定理
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{多個問題| {{expand|time=2013-11-11T13:48:06+00:00}} {{unreferenced|time=2013-11-11T13:48:06+00:00}} {{RoughTranslation|en:Ham sandwich theorem}} }} [[File:Théorème-du-sandwich.jpg|thumb|火腿三明治定理的图解。]] '''火腿三明治定理'''('''{{lang-en|Ham sandwich theorem}}'''),也被称为Stone-Tukey定理,它在[[测度论]]中有重要的意义。火腿三明治定理说明在n-维[[向量空間|空间]]中有n个可[[测度|测量]]的“物体”,可以用一个(n-1)-维的[[超平面]]把它们同時分成[[測度]]相等的两部分。 == 命名 == 当 n=3 时,就像一个三明治一样——这里的三个“物体”则是两片面包和中间的火腿。用一个平面可以同时把三个“物体”截断。 == 二維版本的證明:「旋轉刀片」 == 二維版本的證明比任意維度的證明較為簡單,流程如下: 對任何角度<math>\alpha\in[0,\pi]</math>,均存在一條與 X 軸成角度<math>\alpha</math>的直線平分第一個物體。(需使用[[介值定理]]) 令<math>\alpha</math>由 0 增加到 <math>\pi</math>,再使用介值定理,則存在一條直線同時平分第二個物體。 == 定理的離散版本 == 離散版本可以視為定理的特例,當中每一個"物體"都是用有限個點組成的集合,並使用[[計數測度]]。但需要考慮點剛好落左超平面上時的情況。 [[Category:拓扑学]] [[Category:拓撲學理論]] == 參考文獻 == *{{citation | doi = 10.2307/4145019 | last1 = Beyer | first1 = W. A. | last2 = Zardecki | first2 = Andrew | issue = 1 | journal = [[American Mathematical Monthly]] | pages = 58–61 | title = The early history of the ham sandwich theorem | url = http://proquest.umi.com/pqdweb?did=526216421&Fmt=3&clientId=5482&RQT=309&VName=PQD | volume = 111 | year = 2004 | jstor = 4145019}}. *{{citation | doi = 10.1016/S0747-7171(86)80020-7 | last1 = Edelsbrunner | first1 = Herbert | author1-link = Herbert Edelsbrunner | last2 = Waupotitsch | first2 = R. | journal = Journal of Symbolic Computation | pages = 171–178 | title = Computing a ham sandwich cut in two dimensions | volume = 2 | year = 1986}}. *{{citation | last1 = Lo | first1 = Chi-Yuan | last2 = Steiger | first2 = W. L. | contribution = An optimal time algorithm for ham-sandwich cuts in the plane | pages = 5–9 | title = Proceedings of the Second Canadian Conference on Computational Geometry | year = 1990}}. *{{citation | last1 = Lo | first1 = Chi-Yuan | last2 = Matoušek | first2 = Jiří | author2-link = Jiří Matoušek (mathematician) | last3 = Steiger | first3 = William L. | doi = 10.1007/BF02574017 | journal = [[Discrete and Computational Geometry]] | pages = 433–452 | title = Algorithms for Ham-Sandwich Cuts | volume = 11 | year = 1994}}. *{{citation | doi = 10.1016/0196-6774(85)90011-2 | last = Megiddo | first = Nimrod |authorlink= Nimrod Megiddo | journal = Journal of Algorithms | pages = 430–433 | title = Partitioning with two lines in the plane | volume = 6 | year = 1985}}. *{{citation | last1 = Smith | first1 = W. D. | last2 = Wormald | first2 = N. C. | doi = 10.1109/sfcs.1998.743449 | chapter = Geometric separator theorems and applications | title = Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280) | pages = 232 | year = 1998 | isbn = 0-8186-9172-7 | pmid = | pmc = }} *{{citation | last = Steinhaus | first = Hugo | author-link = Hugo Steinhaus | journal = Mathesis Polska | pages = 26–28 | title = A note on the ham sandwich theorem | volume = 9 | year = 1938}}. *{{citation | doi = 10.1215/S0012-7094-42-00925-6 | last1 = Stone | first1 = Arthur H. | author1-link = Arthur Harold Stone | last2 = Tukey | first2 = John W. | author2-link = John Tukey | journal = [[Duke Mathematical Journal]] | pages = 356–359 | title = Generalized "sandwich" theorems | url = http://projecteuclid.org/euclid.dmj/1077493229 | volume = 9 | year = 1942 | accessdate = 2019-06-14 | archive-date = 2020-08-26 | archive-url = https://web.archive.org/web/20200826232023/https://www.projecteuclid.org/euclid.dmj/1077493229 | dead-url = no }}. *{{citation | last = Stojmenovíc | first = Ivan | author-link = Ivan Stojmenović | journal = Info. Processing Letts. | pages = 15–21 | title = Bisections and ham-sandwich cuts of convex polygons and polyhedra. | volume = 38 | number = 1 | year = 1991}}.
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:多個問題
(
查看源代码
)
返回
火腿三明治定理
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息