查看“︁泽尔尼克多项式”︁的源代码
←
泽尔尼克多项式
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA |G1=Math }} [[Image:ZernikePolynome6.svg|360px|thumb|头15个泽尔尼克多项式]] [[File:Zernike Polynomial J.gif|thumb|360px|20个泽尔尼克多项式 以Noll序列表示]] '''泽尔尼克多项式'''是一个以1953年获[[诺贝尔物理学奖]]荷兰[[物理学家]][[弗里茨·泽尔尼克]]命名的正交多项式,分为奇、偶两类 奇多项式: :<math>Z^{m}_n(\rho,\varphi) = R^m_n(\rho)\,\cos(m\,\varphi) \!</math> 偶多项式 :<math>Z^{-m}_n(\rho,\varphi) = R^m_n(\rho)\,\sin(m\,\varphi), \!</math> 其中<math> n \ge m</math> 为非负整数, <math>\phi</math>为[[方位角]] <math>0\le\rho\le 1</math> 为径向距离 如果 ''n''-''m''为偶数则 :<math>R^m_n(\rho) = \sum_{k=0}^{\tfrac{n-m}{2}} \frac{(-1)^k\,(n-k)!}{k!\left (\tfrac{n+m}{2}-k \right )! \left (\tfrac{n-m}{2}-k \right)!} \;\rho^{n-2\,k}</math> 如果''n''-''m''为奇数,则 :<math>R^m_n(\rho) =0</math> ==泽尔尼克多项式的超几何函数表示== 泽尔尼克多项式也可以表示为超几何函数 :<math>\begin{align} R_n^m(\rho) &= \binom{n}{\tfrac{n+m}{2}}\rho^n \ {}_2F_{1}\left(-\tfrac{n+m}{2},-\tfrac{n-m}{2};-n;\rho^{-2}\right) \\ &= (-1)^{\tfrac{n+m}{2}}\binom{\tfrac{n+m}{2}}{\tfrac{n-m}{2}}\rho^m \ {}_2F_{1}\left(1+n,1-\tfrac{n-m}{2};1+\tfrac{n+m}{2};\rho^2\right) \end{align}</math> ==Noll 序列== Noll 用一个J数字表示 [n,m]:如下表 {|class="wikitable" !n,m {{!!}} 0,0{{!!}}1,1{{!!}} 1,−1 {{!!}} 2,0{{!!}} 2,−2 {{!!}} 2,2{{!!}}3,−1{{!!}} 3,1 {{!!}} 3,−3 {{!!}} 3,3 |------- ! j {{!}} 1{{!!}}2{{!!}} 3 {{!!}} 4 {{!!}} 5 {{!!}} 6 {{!!}} 7 {{!!}}8 {{!!}} 9{{!!}} 10 |----- !n,m {{!!}}4,0 {{!!}}4,2 {{!!}}4,−2{{!!}}4,4{{!!}}4,−4{{!!}}5,1{{!!}}5,−1{{!!}}5,3 {{!!}}5,−3{{!!}}5,5 |----- ! j {{!!}}11 {{!!}}12 {{!!}}13 {{!!}}14{{!!}}15{{!!}}16{{!!}} 17 {{!!}} 18 {{!!}}19 {{!!}}20 |} ==泽尔尼克多项式== 由于 :<math>I_j=\int_0^{2\pi} \int_0^1 Z_j^2\,\rho\,d\rho\,d\theta =k_j* \pi.</math> 其中<math>k_j</math>因j而异, :<math>k_1 =1</math> :<math>k_2 =\frac{ 1 }{4 }</math> :<math>k_3 =\frac{ 1}{ 4 }</math> :<math>k_4 =\frac{ 1}{3 }</math> :<math>k_5 =\frac{ 1}{ 6 }</math> 必须先归一化 令<math>Z_j=Z_j/\sqrt(k_j)</math> 使得 :<math>I_j=\int_0^{2\pi} \int_0^1 Z_j^2\,\rho\,d\rho\,d\theta = \pi.</math> 归一化泽尔尼克多项式以Noll序列排列如下: {| class="wikitable" |- ! Noll index (<math>j</math>) !! Radial degree (<math>n</math>) !! Azimuthal degree (<math>m</math>) !! <math>Z_j</math> !! Classical name |- | 1 || 0 || 0 || <math>1</math> || [[Piston (optics)|Piston]] |- | 2 || 1 || 1 || <math>2 \rho \cos \theta</math> || [[Tilt (optics)|Tip]] (lateral position) (X-Tilt) |- | 3 || 1 || −1 || <math>2 \rho \sin \theta</math> || [[Tilt (optics)|Tilt]] (lateral position) (Y-Tilt) |- | 4 || 2 || 0 || <math>\sqrt{3} (2 \rho^2 - 1)</math> || [[Defocus aberration|Defocus]] (longitudinal position) |- | 5 || 2 || −2 || <math>\sqrt{6} \rho^2 \sin 2 \theta</math> || [[Astigmatism]] |- | 6 || 2 || 2 || <math>\sqrt{6} \rho^2 \cos 2 \theta</math> || Astigmatism |- | 7 || 3 || −1 || <math>\sqrt{8} (3 \rho^3 - 2\rho) \sin \theta</math> || [[Coma (optics)|Coma]] |- | 8 || 3 || 1 || <math>\sqrt{8} (3 \rho^3 - 2\rho) \cos \theta</math> || Coma |- | 9 || 3 || −3 || <math>\sqrt{8} \rho^3 \sin 3 \theta</math> || Trefoil |- | 10 || 3 || 3 || <math>\sqrt{8} \rho^3 \cos 3 \theta</math> || Trefoil |- | 11 || 4 || 0 || <math>\sqrt{5} (6 \rho^4 - 6 \rho^2 +1)</math> || Third-order [[Spherical aberration|spherical]] |- | 12 || 4 || 2 || <math>\sqrt{10} (4 \rho^4 - 3\rho^2) \cos 2 \theta</math> || — |- | 13 || 4 || −2 || <math>\sqrt{10} (4 \rho^4 - 3\rho^2) \sin 2 \theta</math> || — |- | 14 || 4 || 4 || <math>\sqrt{10} \rho^4 \cos 4 \theta</math> || — |- | 15 || 4 || −4 || <math>\sqrt{10} \rho^4 \sin 4 \theta</math> || — |} ==正交性== ;径向正交性 :<math>\int_0^1 \rho \sqrt{2n+2}R_n^m(\rho)\,\sqrt{2n'+2}R_{n'}^{m}(\rho)\,d\rho = \delta_{n,n'}.</math> ;角度正交性 :<math>\int_0^{2\pi} \cos(m\varphi)\cos(m'\varphi)\,d\varphi=\epsilon_m\pi\delta_{|m|,|m'|},</math> :<math>\int_0^{2\pi} \sin(m\varphi)\sin(m'\varphi)\,d\varphi=(-1)^{m+m'}\pi\delta_{|m|,|m'|};\quad m\neq 0,</math> :<math>\int_0^{2\pi} \cos(m\varphi)\sin(m'\varphi)\,d\varphi=0,</math> 其中 <math>\epsilon_m</math> 称为Neumann因子,其数值为 ''2'' 如果满足 <math>m=0</math> ,数值为 ''1'',如果 <math>m\neq 0</math>. ;径向与角度正交性 :<math>\int Z_n^m(\rho,\varphi)Z_{n'}^{m'}(\rho,\varphi) \, d^2r =\frac{\epsilon_m\pi}{2n+2}\delta_{n,n'}\delta_{m,m'},</math> 其中 <math>d^2r=\rho\,d\rho\,d\varphi</math> 为 雅可比矩阵 <math>n-m</math> 与 <math>n'-m'</math> 都是偶数. ==参考文献== {{reflist}} * {{MathWorld|title=Zernike Polynomial|urlname=ZernikePolynomial}} * {{cite journal |first1=P. G. |last1=Callahan |first2=M. |last2=De Graef |title=Precipitate shape fitting and reconstruction by means of 3D Zernike functions |doi=10.1088/0965-0393/20/1/015003 |year=2012 |journal= Model. Simul. Mat. Sci. Engin. |volume=20 |pages=015003 |bibcode=2012MSMSE..20a5003C }} * {{cite journal |first1=C. E. |last1= Campbell |doi=10.1364/JOSAA.20.000209 |title=Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed |journal=J. Opt. Soc. Am. A |volume=20 |year=2003 |bibcode=2003JOSAA..20..209C |page=209 |issue=2}} * {{cite journal |first1=C. |last1=Cerjan |title=The Zernike-Bessel representation and its application to Hankel transforms |journal=J. Opt. Soc. Am. A |volume=24 |year=2007 |page=1609 |doi=10.1364/JOSAA.24.001609 |bibcode=2007JOSAA..24.1609C |issue=6}} * {{cite journal |first1=S. A. |last1=Comastri |first2=L. I. |last2=Perez |first3=G. D. |last3=Perez |first4=G. |last4=Martin |first5=K. |last5=Bastida Cerjan |doi=10.1088/1464-4258/9/3/001 |title=Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations |journal=J. Opt. Soc. Am. A |volume=9 |year=2007 |page=209 |bibcode=2007JOptA...9..209C |issue=3 }} * {{cite journal |first1=G. |last1=Conforti |title=Zernike aberration coefficients from Seidel and higher-order power-series coefficients |journal=Opt. Lett. |volume=8 |year=1983 |pages=407–408 |doi=10.1364/OL.8.000407 |bibcode=1983OptL....8..407C |issue=7 }} * {{cite journal |first1=G-m. |last1=Dai |first2=V. N. |last2=Mahajan |url=http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-1-139 |title=Zernike annular polynomials and atmospheric turbulence |journal=J. Opt. Soc. Am. A |volume=24 |year=2007 |page=139 |doi=10.1364/JOSAA.24.000139 |bibcode=2007JOSAA..24..139D |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005250/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-24-1-139 |dead-url=no }} * {{cite journal |first1=G-m. |last1=Dai |url=http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-3-539 |title=Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula |journal=J. Opt. Soc. Am. A |volume=23 |year=2006 |page=539 |doi=10.1364/JOSAA.23.000539 |bibcode=2006JOSAA..23..539D |issue=3 |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005250/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-23-3-539 |dead-url=no }} * {{cite journal |first1=J. A. |last1=Díaz |first2=J. |last2=Fernández-Dorado |first3=C. |last3=Pizarro |first4=J. |last4=Arasa |doi=10.1080/09500340802531224 |title=Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression |journal=Journal of Modern Optics |volume=56 |issue=1 |year=2009 |bibcode=2009JMOp...56..149D |pages=149–155 }} * {{cite web |first1=J. A. |last1=Díaz |first2=J. |last2=Fernández-Dorado |url=http://demonstrations.wolfram.com/ZernikeCoefficientsForConcentricCircularScaledPupils/ |title=Zernike Coefficients for Concentric, Circular, Scaled Pupils |access-date=2015-01-29 |archive-date=2020-03-18 |archive-url=https://web.archive.org/web/20200318175056/https://demonstrations.wolfram.com/ZernikeCoefficientsForConcentricCircularScaledPupils/ |dead-url=no }} from The Wolfram Demonstrations Project. * {{cite journal |first1=Sajad |last1=Farokhi |first2=Siti Mariyam |last2=Shamsuddin |first3=Jan |last3=Flusser |first4=U.U |last4=Sheikh |first5=Mohammad |last5=Khansari |first6=Kourosh |last6=Jafari-Khouzani |url=http://dx.doi.org/10.1117/1.JEI.22.1.013030 |title=Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis |journal=Journal of Electronic Imaging |volume=22 |year=2013 |issue=1 |doi=10.1117/1.JEI.22.1.013030 |bibcode = 2013JEI....22a3030F }} * {{cite journal |first1=J. |last1=Gu |first2=H. Z. |last2=Shu |first3=C. | last3=Toumoulin |first4=L. M. | last4=Luo |title=A novel algorithm for fast computation of Zernike moments |journal=Pattern Recogn. |year=2002 |volume=35 |number=12 |pages=2905–2911 |doi=10.1016/S0031-3203(01)00194-7 }} * {{cite journal |first1=J. |last1=Herrmann |url=http://www.opticsinfobase.org/abstract.cfm?URI=josa-71-8-989 |title=Cross coupling and aliasing in modal wave-front estimation |journal=J. Opt. Soc. Am. |volume=71 |year=1981 |page=989 |doi=10.1364/JOSA.71.000989 |bibcode=1981JOSA...71..989H |issue=8 |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005251/https://www.osapublishing.org/josa/abstract.cfm?uri=josa-71-8-989 |dead-url=no }} * {{cite journal |first1=P. H. |last1=Hu |first2=J. |last2=Stone |first3=T. |last3=Stanley |title=Application of Zernike polynomials to atmospheric propagation problems |journal=J. Opt. Soc. Am. A |volume=6 |year=1989 |page=1595 |doi=10.1364/JOSAA.6.001595 |bibcode=1989JOSAA...6.1595H |issue=10 }} * {{cite journal |first1=E. C. |last1=Kintner |doi=10.1080/713819334 |title=On the mathematical properties of the Zernike Polynomials |journal=Opt. Acta |volume=23 |year=1976 |page=679 |bibcode=1976AcOpt..23..679K |issue=8 }} * {{cite journal |first1=G. N. |last1=Lawrence |first2=W. W. |last2=Chow |title=Wave-front tomography by Zernike Polynomial decomposition |journal=Opt. Lett. |volume=9 |issue=7 |year=1984 |page=267 |doi=10.1364/OL.9.000267 |bibcode=1984OptL....9..267L }} * {{cite journal |first1=Haiguang |last1=Liu |first2=Richard J. |last2=Morris |first3=A. |last3=Hexemer |first4=Scott |last4=Grandison |first5=Peter H. |last5=Zwart |title=Computation of small-angle scattering profiles with three-dimensional Zernike polynomials |doi=10.1107/S010876731104788X |journal=Acta Cryst. A |number=A69 |pages=278–285 |year=2012 }} * {{cite journal |first1=L. |last1=Lundström |first2=P. |last2=Unsbo |doi=10.1364/JOSAA.24.000569 |title=Transformation of Zernike coefficients: scaled, translated and rotated wavefronts with circular and elliptical pupils |journal=J. Opt. Soc. Am. A |volume=24 |year=2007 |page=569 |bibcode=2007JOSAA..24..569L |issue=3 }} * {{cite journal |first1=V. N. |last1=Mahajan |title=Zernike annular polynomials for imaging systems with annular pupils |journal=J. Opt. Soc. Am. |volume=71 |year=1981 |page=75 |doi=10.1364/JOSA.71.000075 |bibcode=1981JOSA...71...75M }} * {{cite arXiv |first1= R. J. |last1=Mathar |eprint=0705.1329 |title=Third Order Newton's Method for Zernike Polynomial Zeros |class= math.NA |bibcode=2007arXiv0705.1329M |year= 2007}} * {{cite journal |first1=R. J. |last1=Mathar |doi=10.2298/SAJ0979107M |title=Zernike Basis to Cartesian Transformations |journal=[[Serbian Astronomical Journal]] |volume=179 |year=2009 |bibcode=2009SerAj.179..107M |pages=107–120 |issue=179|arxiv = 0809.2368 }} * {{cite journal |first1=A. |last1=Prata Jr |first2=W. V. T. |last2=Rusch |url=http://www.opticsinfobase.org/abstract.cfm?URI=ao-28-4-749 |title=Algorithm for computation of Zernike polynomials expansion coefficients |journal=Appl. Opt. |volume=28 |year=1989 |page=749 |bibcode=1989ApOpt..28..749P |doi=10.1364/AO.28.000749 |issue=4 |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005252/https://www.osapublishing.org/ao/abstract.cfm?uri=ao-28-4-749 |dead-url=no }} * {{cite journal |first1=J. |last1=Schwiegerling |url=http://www.opticsinfobase.org/abstract.cfm?URI=josaa-19-10-1937 |title=Scaling Zernike expansion coefficients to different pupil sizes |journal=J. Opt. Soc. Am. A |volume=19 |year=2002 |page=1937 |bibcode=2002JOSAA..19.1937S |doi=10.1364/JOSAA.19.001937 |issue=10 |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005252/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-19-10-1937 |dead-url=no }} * {{cite journal |first1=C. J. R. |last1=Sheppard |authorlink=Colin Sheppard |first2=S. |last2=Campbell |first3=M. D. |last3=Hirschhorn |url=http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-20-3963 |title=Zernike expansion of separable functions in Cartesian coordinates |journal=Appl. Opt. |volume=43 |year=2004 |page=3963 |doi=10.1364/AO.43.003963 |bibcode=2004ApOpt..43.3963S |issue=20 |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005254/https://www.osapublishing.org/ao/abstract.cfm?uri=ao-43-20-3963 |dead-url=no }} * {{cite journal |first1=H. |last1=Shu |first2=L. |last2=Luo |first3=G. |last3=Han |first4=J.-L. |last4=Coatrieux |url=http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-8-1960 |title=General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes |journal=J. Opt. Soc. Am. A |volume=23 |year=2006 |page=1960 |bibcode=2006JOSAA..23.1960S |doi=10.1364/JOSAA.23.001960 |issue=8 |access-date=2015-01-29 |archive-date=2019-07-02 |archive-url=https://web.archive.org/web/20190702005253/https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-23-8-1960 |dead-url=no }} * {{cite journal |first1=W. |last1=Swantner |first2=W. W. |last2=Chow |url=http://www.opticsinfobase.org/abstract.cfm?URI=ao-33-10-1832 |title=Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes |journal=Appl. Opt. |volume=33 |year=1994 |page=1832 |bibcode=1994ApOpt..33.1832S |doi=10.1364/AO.33.001832 |issue=10 |access-date=2015-01-29 |archive-date=2015-01-24 |archive-url=https://web.archive.org/web/20150124041244/http://www.opticsinfobase.org/abstract.cfm?URI=ao-33-10-1832 |dead-url=no }} * {{cite journal |first1=W. J. |last1=Tango |doi=10.1007/BF00882606 |bibcode=1977ApPhy..13..327T |title=The circle polynomials of Zernike and their application in optics |journal=Appl. Phys. A |volume=13 |year=1977 |page=327 |issue=4 }} * {{cite journal |first1=R. K. |last1=Tyson |title=Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients |journal=Opt. Lett. |volume=7 |year=1982 |doi=10.1364/OL.7.000262 |page=262 |bibcode=1982OptL....7..262T |issue=6 }} * {{cite journal |first1=J. Y. |last1=Wang |first2=D. E. |last2=Silva |title=Wave-front interpretation with Zernike Polynomials |journal=Appl. Opt. |volume=19 |year=1980 |page=1510 |doi=10.1364/AO.19.001510 |bibcode=1980ApOpt..19.1510W |issue=9 }} * {{cite journal |first1=R. |last1=Barakat |title=Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials |journal=J. Opt. Soc. Am. |volume=70 |year=1980 |page=739 |doi=10.1364/JOSA.70.000739 |bibcode=1980JOSA...70..739B |issue=6 }} * {{cite journal |first1=A. B. |last1=Bhatia |first2=E. |last2=Wolf |doi=10.1088/0370-1301/65/11/112 |title=The Zernike circle polynomials occurring in diffraction theory |journal=Proc. Phys. Soc. B |volume=65 |year=1952 |page=909 |bibcode=1952PPSB...65..909B |issue=11 }} * {{cite journal |first1=T. A. |last1=ten Brummelaar |title=Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike |journal=Opt. Commun. |volume=132 |year=1996 |issue=3–4 |page=329 |bibcode=1996OptCo.132..329T |doi=10.1016/0030-4018(96)00407-5 }} * {{cite journal |first1=M. |last1=Novotni |first2=R. |last2=Klein |url=http://www.cg.cs.uni-bonn.de/docs/publications/2003/novotni-2003-3d.pdf |title=3D Zernike Descriptors for Content Based Shape Retrieval |journal=Proceedings of the 8th ACM Symposium on Solid Modeling and Applications |access-date=2015-01-29 |archive-date=2007-07-29 |archive-url=https://web.archive.org/web/20070729182753/http://www.cg.cs.uni-bonn.de/docs/publications/2003/novotni-2003-3d.pdf |dead-url=no }} * {{cite journal |first1=M. |last1=Novotni |first2=R. |last2=Klein |url=http://www.cg.cs.uni-bonn.de/docs/publications/2004/novotni-2004-shape.pdf |title=Shape retrieval using 3D Zernike descriptors |journal=Computer Aided Design |volume=36 |issue=11 |pages=1047–1062 |doi=10.1016/j.cad.2004.01.005 |year=2004 |access-date=2015-01-29 |archive-date=2007-07-29 |archive-url=https://web.archive.org/web/20070729182512/http://www.cg.cs.uni-bonn.de/docs/publications/2004/novotni-2004-shape.pdf |dead-url=no }} * {{cite journal |first1=Sajad |last1=Farokhi |first2=Siti Mariyam |last2=Shamsuddin |first3=U.U |last3=Sheikh |first4=Jan |last4=Flusser |url=https://www.researchgate.net/profile/Sajad_Farokhi/publication/261286249_Near_Infrared_Face_Recognition_A_Comparison_of_Moment-Based_Approaches/file/50463533c3e9066a13.pdf?ev=pub_int_doc_dl&origin=publication_list&inViewer=true |title=Near Infrared Face Recognition: A Comparison of Moment-Based Approaches |booktitle=The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications |volume=291 |publisher=Springer |pages=129–135 |year=2014 |issue=1 |doi=10.1007/978-981-4585-42-2_15 }} * {{cite journal |first1=Sajad |last1=Farokhi |first2=Siti Mariyam |last2=Shamsuddin |first3=Jan |last3=Flusser |first4=U.U |last4=Sheikh |first5=Mohammad |last5=Khansari |first6=Kourosh |last6=Jafari-Khouzani |url=http://www.sciencedirect.com/science/article/pii/S1051200414001304 |title=Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform |journal=Digital Signal Processing |volume=31 |year=2014 |issue=1 |doi=10.1016/j.dsp.2014.04.008 |access-date=2015-01-29 |archive-date=2019-06-02 |archive-url=https://web.archive.org/web/20190602182442/https://www.sciencedirect.com/science/article/pii/S1051200414001304 |dead-url=no }} [[Category:正交多项式]] [[Category:物理光学]] [[Category:荷兰发明]]
该页面使用的模板:
Template:!!
(
查看源代码
)
Template:Cite arXiv
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:MathWorld
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
泽尔尼克多项式
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息