查看“︁氢化铀”︁的源代码
←
氢化铀
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{风格|time=2012-8-22}} {{Chembox |ImageFile=UD3.png | Verifiedfields = changed | verifiedrevid = 470619917 | OtherNames = 氢化铀(III)<ref>{{cite book|author=Carl L. Yaws|title=Thermophysical properties of chemicals and hydrocarbons|url=http://books.google.com/books?id=31O4upzTHQwC&pg=PA307|accessdate=11 October 2011|year=2008|publisher=William Andrew|isbn=978-0-8155-1596-8|pages=307–|archive-date=2014-01-01|archive-url=https://web.archive.org/web/20140101133801/http://books.google.com/books?id=31O4upzTHQwC&pg=PA307|dead-url=no}}</ref><br />三氢化铀<ref name=wib>{{cite book|author1=Egon Wiberg|author2=Nils Wiberg|author3=Arnold Frederick Holleman|title=Inorganic chemistry|url=http://books.google.com/books?id=Mtth5g59dEIC&pg=PA239|accessdate=11 October 2011|year=2001|publisher=Academic Press|isbn=978-0-12-352651-9|pages=239–|archive-date=2014-01-01|archive-url=https://web.archive.org/web/20140101133657/http://books.google.com/books?id=Mtth5g59dEIC&pg=PA239|dead-url=no}}</ref><ref name=mor>{{cite book|author1=Gerd Meyer|author2=Lester R. Morss|title=Synthesis of lanthanide and actinide compounds|url=http://books.google.com/books?id=bnS5elHL2w8C&pg=PA44|accessdate=11 October 2011|year=1991|publisher=Springer|isbn=978-0-7923-1018-1|pages=44–|archive-date=2014-01-01|archive-url=https://web.archive.org/web/20140101133712/http://books.google.com/books?id=bnS5elHL2w8C&pg=PA44|dead-url=no}}</ref> | Section1 = {{Chembox Identifiers | CASNo = 13598-56-6 | CASNo_Ref = {{cascite|correct|CAS}} | ChemSpiderID = 25935465 | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | SMILES = [UH3] | SMILES1 = [H-].[H-].[H-].[U+3] | StdInChI = 1S/U.3H | StdInChI_Ref = {{stdinchicite|changed|chemspider}} | StdInChIKey = XOTGRWARRARRKM-UHFFFAOYSA-N | StdInChIKey_Ref = {{stdinchicite|changed|chemspider}} }} | Section2 = {{Chembox Properties | Formula = {{Chem|UH|3}} | MolarMass = 241.05273 | Density = 10.95 g cm<sup>−3</sup> | Solubility = 反应 }} | Section3 = {{Chembox Structure | CrystalStruct = 立方晶系,[[皮尔逊符号|cP32]] | SpaceGroup = Pm{{Overline|3}}n, No. 223 | LattConst_a = 664.3 pm<ref>{{cite journal|journal = Solid State Commun|year = 1985|volume = 53|pages = 423–426|title = Neutron diffraction study of b-UD3 AND b-UH3|url = https://archive.org/details/sim_solid-state-communications_1985_53/page/423|authors = Bartscher W., Boeuf A., Caciuffo R., Fournier J.M., Kuhs W.F., Rebizant J., Rustichelli F|doi=10.1016/0038-1098(85)91000-2}}</ref> }} | Section5 = {{Chembox Hazards | ExternalMSDS = [http://www.ibilabs.com/Uranium%20Hydride-MSDS.htm ibilabs.com] | FlashPt = 自燃 }} }}'''氢化铀''',又称'''三氢化铀'''(<chem>UH3</chem>),为[[铀]]的[[氢化物]]。 ==性质== 氢化铀是一种[[剧毒]]的棕褐色至棕黑色,可[[自燃]]粉末或脆性[[固体]]。 它在 20°C 下的[[密度]]是 10.95 g cm<sup>−3</sup>,大大低于铀的密度 (19.1 g cm<sup>−3</sup>)。 它具有[[金属]][[导电性]],在[[盐酸]]中[[微溶]],在[[硝酸]]中[[分解反应|分解]]。 一共存在氢化铀的两种[[晶体]],均为[[立方晶体]]:在低温下获得的α形式和在温度高于250℃时产生的β形式。<ref name="EncyChem782"/> 两种形式在室温及低于室温的温度下都是[[亚稳态]]的,但加热至100°C时,α形式会缓慢转变为β形式。<ref name=mor/> <chem>\alpha - UH3</chem>和<chem>\beta - UH3</chem>在低于180K的温度下均为[[铁磁性|铁磁性]],高于180K时為[[顺磁性]]的。<ref>{{cite book|author=K. H. J. Buschow|title=Concise encyclopedia of magnetic and superconducting materials|url=https://books.google.com/books?id=N9mvytGEBtwC&pg=PA901|accessdate=11 October 2011|year=2005|publisher=Elsevier|isbn=978-0-08-044586-1|pages=901–|archive-date=2022-02-08|archive-url=https://web.archive.org/web/20220208103341/https://books.google.com/books?id=N9mvytGEBtwC&pg=PA901}}</ref> ==以铀金属为原料制备== ===和氢气的反应=== 铀金属暴露于氢气中会导致[[氢脆]]。氢在金属中扩散并在[[晶粒边界]]形成脆性氢化物的网络。通过[[真空]]中的[[退火]]可以除去其中的氢并恢复[[延展性]]。<ref>{{cite book|url=https://books.google.com/books?id=eSAkBkAZ-J4C&pg=PA232|title=Plasma and high frequency processes for obtaining and processing materials in the nuclear fuel cycle|publisher=Nova Publishers|year=2003|isbn=1-59033-009-9 |page=232|author=I. N. Toumanov|accessdate=2010-02-07}}</ref> 金属铀加热到 250 至300 [[摄氏度|°C]] (482 至572 [[华氏度|°F]]) 会和[[氢气]]反应,形成'''氢化铀'''。 加热到 500°C 则会释放氢气。 此特性使氢化铀成为各种铀的[[碳化物]]、[[氮化物]]和[[卤化物]]的理想原料,可用于制备反应性铀粉末。<ref name="EncyChem782">{{Cite book |title=The Encyclopedia of the Chemical Elements |chapter=Uranium |year=1968 |authorlink=Glenn T. Seaborg |first=Glenn T. |last=Seaborg |publisher=Reinhold Book Corporation |location=[[Skokie, Illinois]] |page=782|id=LCCCN 68-29938}}</ref> 这个可逆反应如下:<ref name=wib/> :<chem>2U + 3H2 -> 2UH3</chem> 氢化铀不是{{le|间隙化合物|Interstitial compound}},导致金属在形成氢化物时[[膨胀 (形态学)|膨胀]]。 在其[[晶格]]中,每个铀原子被另外6个铀[[原子]]和12个[[氢]]原子包围;每个氢原子在晶格中占据一个大的四面体孔。<ref name="google1">{{cite book|url=https://books.google.com/books?id=u0ZdEdgLlP0C&pg=PA789|title=Text Book Of Inorganic Chemistry|author=Amit Arora|page=789|publisher=Discovery Publishing House|year=2005 |isbn=81-8356-013-X|accessdate=2010-02-07}}</ref> 氢化铀中的氢密度与[[液态]][[水]]或[[液态氢]]中的氢密度大致相同。<ref>{{cite book|url=https://books.google.com/books?id=VW7Nl0L0GeoC&pg=PA393|title=Alternative Energy Systems in Building Design (GreenSource Books)|author=Peter Gevorkian|page=393|publisher=McGraw Hill Professional|year=2009|isbn=978-0-07-162147-2 |accessdate=2010-02-07}}</ref> 通过氢原子的U-H-U[[桥键]]存在于[[结构]]中。<ref>{{cite book|url=https://books.google.com/books?id=0l3bYxwBWMcC&pg=PA218|title=Environmental Pollution |author=G. Singh|publisher=Discovery Publishing House|year=2007|isbn=978-81-8356-241-6 |accessdate=2010-02-07}}</ref> ===和水的反应=== 当铀金属暴露在水蒸气中时,会形成氢化铀。反应进行如下: :<chem>7U + 6 H2O -> 3UO2 + 4UH3</chem> 这时产生的氢化铀是可自燃的;如果此后将金属(例如 : 损坏的[[核燃料|燃料棒]])暴露在空气中,则可能会产生过多的热量,并且铀金属本身也会燃烧。<ref>{{cite journal|url=https://books.google.com/books?id=bAwAAAAAMBAJ&pg=PA49|page=49|title=Rust never sleeps|journal=Bulletin of the Atomic Scientists |year= 1994|accessdate=2010-02-07|volume=50|issue=5}}</ref> 通过暴露于98%[[氦]]与2%[[氧]]的气体混合物中,可以将被氢化物污染的铀[[钝化]]。<ref>{{cite web |url=http://teton.if.uidaho.edu/emsp/overviewflowviz.html |title=EMSP |publisher=Teton.if.uidaho.edu |accessdate=2010-02-07 |archive-url=https://web.archive.org/web/20090930205434/http://teton.if.uidaho.edu/emsp/overviewflowviz.html |archive-date=2009-09-30 }}</ref> 铀金属上的冷凝水促进了氢和氢化铀的形成;在没有氧的情况下可以形成可自燃表面。<ref>{{cite book|url=https://books.google.com/books?id=hcPYAAANpGYC&pg=PT16|title=Advanced nuclear fuel cycles and radioactive waste management|page=176|author=OECD Nuclear Energy Agency|publisher=OECD Publishing|year= 2006|isbn=92-64-02485-9|accessdate=2010-02-07}}</ref> 这给{{le|乏核燃料池|Spent fuel pool}}中的[[乏核燃料]]的水下储存带来了问题。根据氢化物颗粒的大小和分布,在不确定的暴露时间后会发生自燃。<ref>{{cite book|url=https://books.google.com/books?id=CrIz5k3ALv8C&pg=PA197|title=Stabilisation/Solidification Treatment and Remediation: Proceedings of the International Conference on Stabilisation/Solidification Treatment and Remediation, 12–13 April 2005, Cambridge, UK|author1=Abir Al-Tabbaa |author2=J. A. Stegemann |page=197| publisher=Taylor & Francis|year=2005|isbn=0-415-37460-X|accessdate=2010-02-07}}</ref> 这样的暴露带来[[放射性废物]]储存库中燃料碎片自燃的风险。<ref>{{cite book|url=https://books.google.com/books?id=UWURYnLlQzQC&pg=PA278|page=278|title=International Conference on Nuclear Decom 2001: ensuring safe, secure and successful decommissioning : 16–18 October 2001 Commonwealth Conference and Events Centre, London UK, Issue 8|publisher=John Wiley and Sons|year=2001|accessdate=2010-02-07|isbn=1-86058-329-6}}</ref> 暴露于蒸汽中的铀金属产生氢化铀和[[二氧化铀]]的混合物。<ref name="google1"/> 氢化铀与水接触会生成氢气。它与强氧化剂接触,可能会引起火灾和[[爆炸]]。它与[[卤代烃]]接触可能引起剧烈反应。<ref>{{cite web |url=http://www.osha.gov/SLTC/healthguidelines/uraniuminsolublecompounds/recognition.html |title=Uranium & Insoluble Compounds |publisher=Osha.gov |accessdate=2010-02-07 |archive-url=https://web.archive.org/web/20100322215227/http://www.osha.gov/SLTC/healthguidelines/uraniuminsolublecompounds/recognition.html |archive-date=2010-03-22 }}</ref> ==应用== 氢 、[[氘]]和[[氚]]可通过与铀反应,然后用热分解生成的氢化物/氘化物/氚化物来纯化。 <ref>{{cite book|url=https://books.google.com/books?id=MYCBJIKpC2gC&pg=PA104|title=Thermophysical properties of lithium hydride, deuteride, and tritide and of their solutions with lithium|page=104|publisher=Springer|year=1987|isbn=0-88318-532-6|author=E. E. Shpil'rain|accessdate=2010-02-07|archive-date=2022-02-08|archive-url=https://web.archive.org/web/20220208103341/https://books.google.com/books?id=MYCBJIKpC2gC&pg=PA104}}</ref> 数十年来,人们已经从氢化铀中制备了极其纯净的氢气。 <ref>{{cite book|url=https://books.google.com/books?id=Na8jRpkPffkC&pg=PA263|page=264|title=Hydrogen energy system: production and utilization of hydrogen and future aspects|publisher=Springer|year=1995|accessdate=2010-02-07|isbn=0-7923-3601-1|author=Yuda Yürüm|archive-date=2022-02-08|archive-url=https://web.archive.org/web/20220208103355/https://books.google.com/books?id=Na8jRpkPffkC&pg=PA263}}</ref> 加热氢化铀是将氢引入真空系统的便捷方法。 <ref>{{cite book|url=https://books.google.com/books?id=yBmnnaODnHgC&pg=PA121|title=Handbook of electron tube and vacuum techniques|author=Fred Rosebury|page=121|publisher=Springer|year=1992|isbn=1-56396-121-0|accessdate=2010-02-07|archive-date=2022-02-08|archive-url=https://web.archive.org/web/20220208103342/https://books.google.com/books?id=yBmnnaODnHgC&pg=PA121}}</ref> 如果粉末状的氢化铀发生热分解,则氢化铀合成时的溶胀和粉碎可用于制备非常细的铀金属。 氢化铀可用于[[氢]]的[[同位素分离]],制备铀金属粉末,并用作[[还原剂]] 。 == 参考文献 == {{reflist}} {{铀化合物}} [[Category:金属氢化物]] [[Category:三价鈾化合物]] [[Category:缺少物质图片的化学品条目]] [[Category:自燃物质]]
该页面使用的模板:
Template:Chembox
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:铀化合物
(
查看源代码
)
Template:风格
(
查看源代码
)
返回
氢化铀
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息